

Measuring Grammatical Diversity from Small Corpora: Derivational Entropy Rates, Mean Length of Utterances, and Annotation Invariance

Fermín Moscoso del Prado Martín 1,2 & Suchir Salhan 1,3

 $^{^{1}\}mathrm{Department}$ of Computer Science & Technology, University of Cambridge, UK

²Jesus College, University of Cambridge, UK

³Gonville & Caius College, University of Cambridge, UK

Introduction

- ► Measuring syntactic complexity in small corpora:
 - ▶ many measures available
 - \blacktriangleright most require substantial corpus annotation
 - ► Mean Length of Utterance: Classic measure, very robust, but considered a "proxy"
- ▶ Derivational Entropy Rate: a robust metric from PCFGs

Derivational Entropy of a Grammar

 \blacktriangleright For a PCFG G, the derivational entropy is:

$$H[G] = -\sum_{t \in T[G]} p_G[t] \log p_G[t]$$

- ► Measures uncertainty/diversity of derivations
- ► Can be computed analytically

Derivational Entropy Rate

▶ Derivational Entropy Rate: average entropy per unit length

$$h[G] = \frac{H[G]}{MLU[G]} = \alpha > 0$$

 \blacktriangleright α observed to be constant across corpora

Hypothesis

- ▶ Derivational Entropy Rate is constant when:
 - 1. Same (or related) language
 - 2. Same grammatical annotation

MLU-Derivational Entropy Relationship

SITE: Smoothed Induced Treebank Entropy

- ► Corrects ML underestimation of entropy
- ► Can be used for measuring the derivational entropy of the source that generated a given sample
- ► Converges very fast, even with small corpora. On realistic PCFGs
 - ▶ Context-free: Converges with \sim 100 sample sentences
 - ▶ Dependency: Converges with \sim 1000 sample sentences

SITE: Convergence on Small Corpora (IcePaHC)

SITE: Across two Treebanks

Blue: Original IcePaHC, Red: Universal Dependencies version

Key Takeaways

- ▶ MLU is a direct measure of syntactic complexity
- ► Derivational entropy rates are stable across corpora with consistent annotation schemes
- ► Enables estimation from unparsed data
- ► Robust even for small treebanks
- ► Enables annotation-invariant comparison

