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My Research Goals & General Method

The “Uninteresting” Aspects of Human Language

▶ In which aspects are human languages exactly as we should
expect them to be?

▶ Information theory provides a powerful tool for this: the
Principle of Maximum Entropy.

Making the Remaining Aspects less Interesting

▶ “Interesting” aspects indicate one is missing pieces of
information: Constraints and costs

▶ Finding these missing bits brings us back to the “uninteresting”
case



Areas of Interest

▶ Language processing and representation
▶ Dynamics of language at different timescales

▶ Dialogue (seconds)
▶ Acquisition and aging (years)
▶ Language change (decades and beyond)

▶ What is/are the distribution(s) of linguistic structures across
languages?

▶ What is the distribution?
▶ Why is it so?
▶ What (if anything) do these distributions tell us about the

nature and processing of human languages.



Phonemic Frequencies are Stable



Why are Phoneme Frequencies not plain Uniform?
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Questions

▶ What is the distribution of phoneme contrasts across languages?
▶ Is it a single distribution, or it depends on the language?
▶ Do such distributions reflect other aspects of language, beyond

phonology?



This is what I would like

▶ I do not want to fit this curve

“With four parameters I can fit an elephant, and with five I can make
him wiggle his trunk.” (von Neumann, according to Fermi)

▶ I want to compute this curve a priori



This is what I would like

▶ I do not want to fit this curve
“With four parameters I can fit an elephant, and with five I can make
him wiggle his trunk.” (von Neumann, according to Fermi)

▶ I want to compute this curve a priori



This is what I would like

▶ I do not want to fit this curve
“With four parameters I can fit an elephant, and with five I can make
him wiggle his trunk.” (von Neumann, according to Fermi)

▶ I want to compute this curve a priori



The Usual Tool: log-log Rank-Probability Plots



Proposed Distributions: We Want Power-laws!

Log-Series Model (Sigurd 1968)

pLS(r | θ) = − θ r

r ln(1 − θ)
, 0 < θ < 1

Yule-Simon Law (Martindale & Tambovtsev 2007)

pY(r | ρ) = ρ
Γ(r) Γ(ρ+ 1)
Γ(r + ρ+ 1)

‘Composite’ (Macklin-Cordes & Round 2020)
▶ Fit a power-law to the left tail (!?!) and something else for the right



How can V Phonemes Distributed?

▶ Before modelling communicative efficiency, preferential
attachment, Martian intervention, . . .

▶ it is good to see how far one can go with mere chance

Fact 1: Probabilities must add up to the unit

p1 + p2 + . . .+ pV =
V∑

i=1

= 1
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How can V Phonemes Distributed?

Fact 1: Probabilities must add up to the unit

Consequences

▶ The probabilities of phonemes observed in a corpus of N of
phonemes, must follow a V -dimensional multinomial
distribution with parameters p1,p2, . . . ,pV , and n = N.

▶ We consider the pi themsemselves as samples from a
V -dimensional Dirichlet distribution with parameters
α1, . . . , αN .

▶ Dirichlet is a distribution over distributions
▶ All distributions on the (V − 1)-simplex are possible samples

from a V -dimensional Dirichlet distribution.
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The (V-1)-Simplex
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The 2-simplex (models 3 dimensional distributions)



How can V Phonemes Distributed? Start näıve

Fact 1: Probabilities must add up to the unit

Assumption: All phonemes are born equal

▶ We only know there are V distinct phonemic contrast
▶ We have no additional information on the contrast themselves
▶ Therefore, we cannot make any reasonable assumption that any

phoneme i is more probable than phoneme j
▶ We must assume that the Dirichlet parameters
α1 = α2 = . . . = αV = α

▶ This is called a Symmetric Dirichlet Distribution with
concentration parameter α.
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Symmetric Dirichlet Distribution

▶ The single parameter α controls the likelihood of getting
samples that are more or less centrally distributed within the
simplex

▶ α = 1: all distributions within the simplex are equally probable
(i.e., a uniform distribution over distributions)

▶ α > 1: more central (i.e., more uniform-like, higher entropy)
distributions are preferred

▶ α < 1: more extreme (i.e., more skewed, lower entropy)
distributions are preferred
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▶ All pi have the same distribution → an individual phoneme
distribution (i.e., for a language) is a random sample of V
values from a Beta(α, (V − 1)α) distribution
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Order Statistics (i.e., Rank values starting from below)

▶ In a sample of size V , sort the observations in non-decreasing
order:

p(1) ≤ p(2) ≤ . . . ≤ p(V ).

The notation p(k) (parentheses) distinguishes the ordered values
from the raw observations p1, . . . ,pV .

▶ p(1): first order statistic (the sample minimum).
▶ p(V): V -th order statistic (the sample maximum).
▶ p(k) for 1 ≤ k ≤ V : the k -th smallest value in the sample (often

interpreted as an empirical quantile).
▶ For a Beta distribution the order statistics involve difficult

integrals, but they are easy to compute numerically



Symmetric Dirichlet Distribution: The Role of Entropy

▶ A sample of a V -dimensional symmetric Dirichlet distribution
are probabilities p1,. . . ,pv

▶ A sample generated from this sampled distribution (i.e., the
observed phonemes in a corpus) is expected to have an entropy:

H = ψ(αV + 1)− ψ(α+ 1)

where ψ is the digamma function
▶ Estimation algorith for α. Given a sample of phonemes (ie., a

corpus):
1. Estimate H and V (possibly, with bias correction; for H, Chao et al.,

2013; for V , Chao & Lee, 1992)
2. Solve the equation numerically

▶ With α, we can compute the mean and variance of the
predicted order statistics
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Datasets I will Use

Universal Declaration of Human Rights
▶ 53 languages, transcribed using XPF (Cohen Priva et al., 2021)
▶ Typologically, genetically, and geographically diverse sample
▶ Imprecisions and missing phonemes (but bias corrections help)

Australian Languages (Macklin-Cordes & Round, 2020)
▶ 166 Australian Language varieties
▶ Typologically, genetically, and geographically limited
▶ Accurate (each inventory curated by an expert)

PHOIBLE (Moran & McCloy, 2019)
▶ removed duplicates, keeping most likely in case of disagreement
▶ 2,681 inventories, but no frequency distributions



It FITS all 53 languages rather well
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Do we really even need to fit it?



Do we really even need to fit it?

Prior Dirichlet parameter Interpretation

Laplace α = 1 Principle of indifference
All probability distributions are equally likely
Used for letters by Gusein-Zade (1988)

Jeffreys α = .5 Principle of consistency
Any parametrisation should lead to the same choice

Observed ⟨α̂⟩ = .78 ± .05 Very close to both priors



▶ Entropy and inventory size are inter-correlated across languages

▶ One can predict H from V with a log-linear regression
(H ≈ .64 logV + .64)

▶ Just two parameters, common for all languages (no more fitting)
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It PREDICTS all 53 languages rather well



We can predict phoneme frequencies



Also for the Australian languages



Also for the Australian languages



Also for the Australian languages

Fitted using the distributions



Also for the Australian languages

Computed directly using the regression parameters from the UDHR



Also for the Australian languages



Also for the Australian languages



Interim summary (I)

▶ The distribution of phonemes in the World’s languages is
roughly what would be expected by chance

▶ H ≈ .64 + .64 logV → H/Hmax ≈ .64 + .64/ logV
▶ The entropy of phoneme distributions lies between 64% and 90%

of the maximum entropy (i.e., with V = 11)
▶ With a slight upper adjustment (larger inventories have lower

entropies in relative terms)
▶ More formal version of observations by Ladefoged & Maddieson

(1996), Pierrehumbert (2001), and Moran & Blasi (2014).
▶ These two pieces of information, are sufficient for computing the

probability distribution of a phonemic inventory a priori, with
just two assumptions:

1. Probabilities sum to one
2. All phonemes are a priori equal
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The Principle of Maximum Entropy

Maximum Entropy

▶ Among the possible distributions of p1, . . . ,pV

▶ The one that maximizes the entropy:

H = −p1 log p1 − p2 log p2 − . . .− pV log pV

is the most probable



Low-Entropy Distributions are Extremely Unlikely
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The Principle of Maximum Entropy

Maximum Entropy

▶ Among the possible distributions of p1, . . . ,pV

▶ The one that maximizes the entropy is the most probable

argmaxH[p1, . . . ,pV ] = −p1 log p1 − . . .− pV log pV
s.t. p1 + . . .+ pV = 1

▶ We should expect p1 = p2 = . . . = pV = 1/V .
▶ As long as there aren’t any additional constraints
▶ Additional constraints can only decrease maximum entropy
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The Principle of Maximum Entropy

Maximum Entropy subject to Constraints

▶ One can introduce costs for each alternative

c1, c2, . . . , cV ≥ 0

▶ This restricts the possible distributions to those that have a
given average cost (or, functionally equivalent, to those that
optimise the average entropy to cost ratio)

argmaxH[p1, . . . ,pV ] = −p1 log p1 − . . .− pV log pV

s.t.

{
p1 + . . .+ pV = 1
p1c1 + . . .+ pV cV = E[C]



The Principle of Maximum Entropy

Solution to Maximum Entropy subject to k Constraints

▶ Gibbs-Boltzman distribution

pi =
1

Z [λ]
e
∑k

j=1 λj ci,j

where λ = λ1, . . . , λk are Lagrange multipliers
▶ matches a log-linear regression model without interactions:

log pi = λ0 +
k∑

j=1

λjci,j

where λ0 = − logZ [λ]
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Possible Costs of Phonemes

“Physical” Costs (articulatory/perceptual)

▶ Some phonemes are more difficult to perceive and/or articulate
▶ These costs should be relatively language independent
▶ Consider the distinction (Gotelli & Chao, 2013)

Abundance : Frequency of a phoneme in a given language. e.g.,
3.2% of the phonemes in spoken English are
instances of /m/ (the 10th most frequent)

Incidence : Frequency of a phoneme across languages. e.g.,
96.8% of the world’s languages contain the
contrast /m/ (the most frequent)

▶ Hypothesis: Incidence and abundance frequencies are correlated
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Possible Costs of Phonemes

“Physical” Costs (articulatory/perceptual)

Phonotactic costs
▶ Human languages are redundant (Shannon, 1951)

▶ The more a phoneme is predictable from its context, the more
it’s likely to be elided (Cohen Priva, 2015)

▶ Diachronically this would leave traces in the distribution.
▶ Hypothesis: more predictable phonemes should be less frequent

▶ Phonotactic surprisal of phonemes (van Son & Pols, 2003)

I(/p/) =
〈
− log

Frequency(<word onset> + /p/)
Frequency(<word onset> + /k/)

〉
,
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Possible Costs of Phonemes

“Physical” Costs (articulatory/perceptual)

▶ Hypothesis: Incidence and abundance frequencies are correlated.

Phonotactic costs
▶ Hypothesis: Phonemes appearing in more predictable contexts

should be less frequent

Lexical costs
▶ Hypothesis Hphonemes ∝ Hwords



Testing the Hypotheses

▶ Log-linear Mixed Effects Regression model
Indep. var. : Abundance of a phoneme in a language (log)

Dependent vars. ▶ Average phonotactic surprisal on UDHR
▶ (log) Incidence frequency from PHOIBLE
▶ Average lexical surprisal on UDHR

Random effect: Language variety (and possible random slopes)

▶ Result (without interactions, and a random slope of phonotactic surprisal)

β t p
Phonotactic Surprisal 0.23 4.11 0.00 → Phonotactic cost ✓
logPincidence 0.76 22.84 0.00 → Physical cost ✓
Lexical Surprisal -0.80 -20.78 0.00 → Lexical cost ✓

(Note: logV was residualised out of both other predictors to avoid
collinearity, and all were standardised to N[0, 1] for effect magnitude
comparability.)
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From the costs, we guess the phoneme probabilities

MaxEnt as a very extreme regression

▶ As in regression, we are given the values of k independent
variables (the costs ci,j)

▶ We also have their average values (Cj = Ei [ci,j ])
▶ Our task is to guess

▶ the regression coefficients (λj) and
▶ the actual probabilities (pi)
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We are missing some constraints



“Costs”

▶ “Cost” is a term used in the maximum entropy literature. It
refers to the individual values of constraints.

▶ It does not necessarily correspond to the cognitive concept of
cost.

▶ This is not evidence for cost optimization or efficiency in the
cognitive sense

▶ Rather, it is just a way of indicating that some magnitudes
must have a finite mean

▶ Whether this is the result of evolutionary optimisation is a
different question.
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Interim Summary (II)

▶ Maximum Entropy can reconstruct the distribution of phonemes

▶ The distribution of phonemes, in isolation reflects aspects of
▶ Perceptual/articulatory factors
▶ The phonotactic structure of a language
▶ The lexical richness of a language

▶ The different representational tiers are interrrelated
▶ However, a plain chance analysis seems to achieve the best

reconstruction
▶ However, the MaxEnt approach is addressing a tougher problem,

not just guessing the probabilities for each rank, but also which
specific phoneme occupies each rank position.

▶ Entropy is the single crucial aspect of the phoneme distribution
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Summary

▶ We are able to compute the distribution of phonemes (not just
fit it)

▶ From two basic assumptions: Normalisation and symmetry,
▶ or from considerations on the properties of individual phonemes

▶ Constraining the probability space works by fixing the entropy
of the distribution to values lower than its maximum.
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A Sneak Peak

▶ This work is part of a larger project, which I call The –right–
end of Zipf’s Laws

▶ In further work, I mathematically demonstrate under which
conditions can power-law and non-power-law distribution of
linguistic structures arise.

▶ One of the consequences is that what appear as power-laws in
language, are most likely illusions

▶ This also enables developing a single unified distribution for
linguistic structures at any tier.
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Thank you!

(image by Bob Tubbs, Public domain, via Wikimedia Commons)



References

▶ Chao, A., & Lee, S.-M. (1992). Estimating the Number of Classes via Sample Coverage.
Journal of the American Statistical Association 87, 210–217

▶ Chao, A. et al. (2013). Entropy and the species accumulation curve: A novel entropy estimator
via discovery rates of new species. Methods in Ecology and Evolution 4.

▶ Cohen Priva, U. (2015) Informativity affects consonant duration and deletion rates.
Laboratory Phonology 6, 243–278.

▶ Cohen Priva, U. et al. (2021). The Cross-linguistic Phonological Frequencies (XPF) Corpus
manual

▶ Gotelli, N. & Chao, A.. (2013). Measuring and Estimating Species Richness, Species Diversity,
and Biotic Similarity from Sampling Data. Encyclopedia of Biodiversity 5 (pp. 195-211)

▶ Gusein-Zade, S. M. (1988). О распределении букв русского языка по частоте встречаемости
[On the distribution of Russian language letters by frequency]. Проблемы передачи
информации 24(4), 102–107.

▶ Ladefoged, P., & Maddieson, I. (1996) The sounds of the world’s languages. Oxford: Blackwell
Publishers.

▶ Moran, S. & McCloy, D. (2019) PHOIBLE 2.0. Jena: Max Planck Institute for the Science of
Human History.

▶ Moran, S., & Blasi, D. E. (2014). Cross-linguistic comparison of complexity measures in
phonological systems. In Proc. 10th International Seminar on Speech Production (ISSP 2014),
Cologne.



References

▶ Macklin-Cordes, J. L., & Round, E. R. (2020). Re-evaluating phoneme frequencies. Frontiers in
Psychology 11, 570895

▶ Martindale, C., & Tambovtsev, Y. (2007). Phoneme frequencies follow a Yule distribution.
SKASE Journal of Theoretical Linguistics 4(2), 1–11.

▶ Pierrehumbert, J. B. (2001). Exemplar dynamics: Word frequency, lenition, and contrast. In J.
L. Bybee & P. Hopper (Eds.), Frequency and the emergence of linguistic structure (pp.
137–157). Amsterdam: John Benjamins.

▶ Shannon, C. E. (1951). Prediction and Entropy of Printed English. Bell System Technical
Journal 30(1), 50–64.

▶ Sigurd, B. (1968). Rank-frequency distributions for phonemes. Phonetica 18(1), 1–15.

▶ van Son, R. J. J. H. & Pols, L. C. W. (2003). How efficient is speech? Proceedings of the
Institute of Phonetic Sciences 25 pp. 171–184.



Order Statistics

▶ General pdf of the k th order statistic

fX(k)(x) =
n!

(k − 1)! (n − k)!
[
F (x)

]k−1[1 − F (x)
]n−k f (x), 0 < x < 1.

▶ Expected value (solved numerically)

E[X(k)] =

∫ 1

0
x

n!
(k − 1)! (n − k)!

[F (x)]k−1[1 − F (x)]n−k f (x) dx .

▶ Variance & standard error (solved numerically)

Var[X(k)] =

∫ 1

0
x2 n!

(k − 1)! (n − k)!
[F (x)]k−1[1−F (x)]n−k f (x) dx−

(
E[X(k)]

)2
, SE[X(k)] =

√
Var[X(k)].
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