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My Research Goals & General Method

The “Uninteresting” Aspects of Human Language

» In which aspects are human languages exactly as we should
expect them to be?

» Information theory provides a powerful tool for this: the
Principle of Maximum Entropy.

Making the Remaining Aspects less Interesting

» “Interesting” aspects indicate one is missing pieces of
information: Constraints and costs

» Finding these missing bits brings us back to the “uninteresting”
case
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Areas of Interest

» Language processing and representation
» Dynamics of language at different timescales
» Dialogue (seconds)
» Acquisition and aging (years)
» Language change (decades and beyond)
» What is/are the distribution(s) of linguistic structures across
languages?
» What is the distribution?
» Why is it so?
» What (if anything) do these distributions tell us about the
nature and processing of human languages.
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Phonemic Frequencies are Stable

Spoken English
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Why are Phoneme Frequencies not plain Uniform?

Spoken English
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Why are Phoneme Frequencies not plain Uniform?
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Questions

» What is the distribution of phoneme contrasts across languages?
» [s it a single distribution, or it depends on the language?

» Do such distributions reflect other aspects of language, beyond
phonology?
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This is what [ would like
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» | do not want to fit this curve
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» I do not want to fit this curve
“With four parameters I can fit an elephant, and with five I can make

him wiggle his trunk.” (von Neumann, according to Fermi)
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This is what [ would like

Spoken English
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» I do not want to fit this curve
“With four parameters I can fit an elephant, and with five I can make

him wiggle his trunk.” (von Neumann, according to Fermi)

» [ want to compute this curve a priori
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The Usual Tool: log-log Rank-Probability Plots

Spoken English
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Proposed Distributions: We Want Power-laws!

Log-Series Model (Sigurd 1968)

0(

T —6) 0<f<1

pus(r|0) =

Yule-Simon Law (Martindale & Tambovtsev 2007)

rrr(p+1)
Mr+p+1)

py(rip)=p

‘Composite’ (Macklin-Cordes & Round 2020)

» Fit a power-law to the left tail (!?!) and something else for the right
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How can V Phonemes Distributed?

» Before modelling communicative efficiency, preferential
attachment, Martian intervention, ...
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How can V Phonemes Distributed?

» Before modelling communicative efficiency, preferential
attachment, Martian intervention, ...

> it is good to see how far one can go with mere chance
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How can V Phonemes Distributed?

» Before modelling communicative efficiency, preferential
attachment, Martian intervention, ...

> it is good to see how far one can go with mere chance

Probabilities must add up to the unit
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How can V Phonemes Distributed?

Probabilities must add up to the unit
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How can V Phonemes Distributed?

Probabilities must add up to the unit

COHSGQUGDCGS

» The probabilities of phonemes observed in a corpus of N of
phonemes, must follow a V-dimensional multinomial
distribution with parameters pq, po, ..., Py, and n = N.
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How can V Phonemes Distributed?

Probabilities must add up to the unit

COHSGQUGDCGS

» The probabilities of phonemes observed in a corpus of N of
phonemes, must follow a V-dimensional multinomial
distribution with parameters pq, po, ..., Py, and n = N.

» We consider the p; themsemselves as samples from a
V-dimensional Dirichlet distribution with parameters
Qe QN

» Dirichlet is a distribution over distributions
» All distributions on the (V — 1)-simplex are possible samples
from a V-dimensional Dirichlet distribution.
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The (V-1)-Simplex

1
X

The 2-simplex (models 3 dimensional distributions)
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How can V Phonemes Distributed? Start naive

pilities must add up to the unit
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All phonemes are born equal

» We only know there are V distinct phonemic contrast
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How can V Phonemes Distributed? Start naive

Probabilities must add up to the unit

All phonemes are born equal

» We only know there are V distinct phonemic contrast
» We have no additional information on the contrast themselves

» Therefore, we cannot make any reasonable assumption that any
phoneme / is more probable than phoneme j

» We must assume that the Dirichlet parameters
a1 =09 =...=0y =

» This is called a Symmetric Dirichlet Distribution with
concentration parameter .

UNIVERSITY OF
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Symmetric Dirichlet Distribution

» The single parameter « controls the likelihood of getting
samples that are more or less centrally distributed within the
simplex

» o = 1: all distributions within the simplex are equally probable
(i.e., a uniform distribution over distributions)

» « > 1: more central (i.e., more uniform-like, higher entropy)
distributions are preferred

» o < 1: more extreme (i.e., more skewed, lower entropy)
distributions are preferred
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Symmetric Dirichlet Distribution
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Symmetric Dirichlet Distribution
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» The single parameter a controls the likelihood of getting
samples that are more or less centrally distributed within the
simplex

» o = 1: all distributions within the simplex are equally probable
(i.e., a uniform distribution over distributions)

» « > 1: more central (i.e., more uniform-like, higher entropy)
distributions are preferred

» « < 1: more extreme (i.e., more skewed, lower entropy)
distributions are preferred

» The marginals (i.e., the distribution of the individual p;) are
distributed according to a Beta(a, (V — 1))
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Symmetric Dirichlet Distribution

» The single parameter a controls the likelihood of getting
samples that are more or less centrally distributed within the
simplex

» o = 1: all distributions within the simplex are equally probable
(i.e., a uniform distribution over distributions)

» « > 1: more central (i.e., more uniform-like, higher entropy)
distributions are preferred

» « < 1: more extreme (i.e., more skewed, lower entropy)
distributions are preferred

» The marginals (i.e., the distribution of the individual p;) are
distributed according to a Beta(a, (V — 1))

» All p; have the same distribution — an individual phoneme
distribution (i.e., for a language) is a random sample of V
values from a Beta(a, (V — 1)a) distribution

JNIVERSITY OF

MBRIDGE



Order Statistics (i.e., Rank values starting from below)

» In a sample of size V, sort the observations in non-decreasing
order:

The notation p(k) (parentheses) distinguishes the ordered values
from the raw observations pq, ..., Py.

> P(q): first order statistic (the sample minimum).
> P(v): V-th order statistic (the sample maximum).

> Pk for 1 < k < V:the k-th smallest value in the sample (often
interpreted as an empirical quantile).

» For a Beta distribution the order statistics involve difficult
integrals, but they are easy to compute numerically
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Symmetric Dirichlet Distribution: The Role of Entropy

» A sample of a V-dimensional symmetric Dirichlet distribution
are probabilities p1,...,py
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Symmetric Dirichlet Distribution: The Role of Entropy

» A sample of a V-dimensional symmetric Dirichlet distribution
are probabilities p1,...,py

» A sample generated from this sampled distribution (i.e., the
observed phonemes in a corpus) is expected to have an entropy:

H=¢(@V+1)—9y(a+1)

where 1 is the digamma function
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Symmetric Dirichlet Distribution: The Role of Entropy

» A sample of a V-dimensional symmetric Dirichlet distribution
are probabilities p1,...,py

» A sample generated from this sampled distribution (i.e., the
observed phonemes in a corpus) is expected to have an entropy:

H=¢(@V+1)—9y(a+1)

where 1 is the digamma function
» Estimation algorith for a.. Given a sample of phonemes (ie., a
corpus):
1. Estimate H and V (possibly, with bias correction; for H, Chao et al.,
2013; for V, Chao & Lee, 1992)
2. Solve the equation numerically
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Symmetric Dirichlet Distribution: The Role of Entropy

v

A sample of a V-dimensional symmetric Dirichlet distribution
are probabilities p1,...,py

» A sample generated from this sampled distribution (i.e., the
observed phonemes in a corpus) is expected to have an entropy:

H=¢(@V+1)—9y(a+1)

where 1 is the digamma function
» Estimation algorith for a.. Given a sample of phonemes (ie., a
corpus):
1. Estimate H and V (possibly, with bias correction; for H, Chao et al.,
2013; for V, Chao & Lee, 1992)
2. Solve the equation numerically
» With a, we can compute the mean and variance of the
predicted order statistics
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Datasets I will Use

Universal Declaration of Human Rights

> 53 languages, transcribed using XPF (Cohen Priva et al., 2021)
» Typologically, genetically, and geographically diverse sample
> Imprecisions and missing phonemes (but bias corrections help)

Australian Languages (Macklin-Cordes & Round, 2020)

> 166 Australian Language varieties
» Typologically, genetically, and geographically limited
> Accurate (each inventory curated by an expert)

PHOIBLE (Moran & McCloy, 2019)

» removed duplicates, keeping most likely in case of disagreement
> 2,681 inventories, but no frequency distributions
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It FITS all 53 languages rather

Cuzco Quechua (a = 0.48) Bislama, (a=1.26)
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It FITS all 53 languages rather
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Do we really even need to fit it?
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Do we really even need to fit it?

Prior Dirichlet parameter Interpretation

Laplace a=1 Principle of indifference
All probability distributions are equally likely
Used for letters by Gusein-Zade (1988)

Jeffreys a=.5 Principle of consistency
Any parametrisation should lead to the same choice
Observed (&) = .78 £.05 Very close to both priors
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» Entropy and inventory size are inter-correlated across languages



» Entropy and inventory size are inter-correlated across languages
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» Entropy and inventory size are inter-correlated across languages

4.0 4 e H

351

2.0+

Zb 3‘0 4‘0 Sb ﬁb
Inventory Size
» One can predict H from V with a log-linear regression

(H~ .64log V + .64)

» Just two parameters, common for all languages (no more fitting)
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It PREDICTS all 53 languages rather well
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We can predict phoneme frequencies

. = Dirichlet (no entropy)
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Also for the Australian languages
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Also for the Australian languages
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Also for the Australian languages

Limilngan (a¢=0.73) Yintyingka, (a=1.01)
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Also for the Australian languages

Limilngan (am= 0.72) Yintyingka, (am = 0.68)
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Computed directly using the regression parameters from the UDHR
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Also for the Australian languages
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Also for the Australian languages
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Interim summary (I)

» The distribution of phonemes in the World’s languages is
roughly what would be expected by chance
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Interim summary (I)

» The distribution of phonemes in the World’s languages is
roughly what would be expected by chance
» Hx~ 64+ 64logV — H/Hpax ~ .64+ .64/logV
» The entropy of phoneme distributions lies between 64% and 90%
of the maximum entropy (i.e., with V = 11)
» With a slight upper adjustment (larger inventories have lower
entropies in relative terms)

» More formal version of observations by Ladefoged & Maddieson
(1996), Pierrehumbert (2001), and Moran & Blasi (2014).
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Interim summary (I)

» The distribution of phonemes in the World’s languages is
roughly what would be expected by chance

» Hx~ 64+ 64logV — H/Hpax ~ .64+ .64/logV

» The entropy of phoneme distributions lies between 64% and 90%
of the maximum entropy (i.e., with V = 11)

» With a slight upper adjustment (larger inventories have lower
entropies in relative terms)

» More formal version of observations by Ladefoged & Maddieson
(1996), Pierrehumbert (2001), and Moran & Blasi (2014).

» These two pieces of information, are sufficient for computing the
probability distribution of a phonemic inventory a priori, with
just two assumptions:

1. Probabilities sum to one
2. All phonemes are a priori equal
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ALRIGHT PEOPLE

Move along. There's nothing to see here.




The Principle of Maximum Entropy

Maximum Entropy

» Among the possible distributions of py, ..., py

» The one that maximizes the entropy:

H = —pylogpr —p2logpz — ... — pylog py

is the most probable
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Low-Entropy Distributions are Extremely Unlikely

Normalized Entropy
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Low-Entropy Distributions are Extremely Unlikely

Proportion of Space under Entropy Thresholds

= Entropy < 0.5
—— Entropy < 0.75
= Entropy < 0.9
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The Principle of Maximum Entropy

ximum Entropy

» Among the possible distributions of py, ..., py

» The one that maximizes the entropy is the most probable

argmax H[py,...,py] = —pilogps — ... — pylogpy
st.pir+...+py=1
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» We should expect py =po=...=py =1/V.
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» We should expect py =po=...=py =1/V.
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The Principle of Maximum Entropy

Maximum Entropy

» Among the possible distributions of py, ..., py

v

The one that maximizes the entropy is the most probable

argmax H[py,...,py] = —pilogps — ... — pylogpy
st.pir+...+py=1

v

We should expect p1 =po=...=py=1/V.

v

As long as there aren’t any additional constraints

v

Additional constraints can only decrease maximum entropy
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The Principle of Maximum Entropy

Maximum Entropy subject to Constraints

» One can introduce costs for each alternative
C1,Co,...,cy >0

» This restricts the possible distributions to those that have a
given average cost (or, functionally equivalent, to those that
optimise the average entropy to cost ratio)

argmax H[py,...,py] = —pilogpi —...— pylogpy
n p1+...+py=1
pict + ...+ pvey = E[C]
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The Principle of Maximum Entropy

Solution to Maximum Entropy subject to k Constraints
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The Principle of Maximum Entropy

Solution to Maximum Entropy subject to k Constraints

» Gibbs-Boltzman distribution

1 k
R 2oj1 AjCij
pl Z[A]e /

where A = \q,..., \¢ are Lagrange multipliers
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The Principle of Maximum Entropy

Solution to Maximum Entropy subject to k Constraints

» Gibbs-Boltzman distribution

1 k
R 2oj1 AjCij
pl Z[A]e /

where A = \q,..., \¢ are Lagrange multipliers

» matches a log-linear regression model without interactions:

K
log pi = Ao + > Ajciy
j=1

where \g = — log Z[\]
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Possible Costs of Phonemes

“Physical” Costs (articulato erceptual)
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Possible Costs of Phonemes

“Physical” Costs (articulat rceptual)

» Some phonemes are more difficult to perceive and/or articulate
» These costs should be relatively language independent
» Consider the distinction (Gotelli & Chao, 2013)

Abundance : Frequency of a phoneme in a given language. e.g.,
3.2% of the phonemes in spoken English are
instances of /m/ (the 10*" most frequent)

Incidence : Frequency of a phoneme across languages. e.g.,
96.8% of the world’s languages contain the
contrast /m/ (the most frequent)
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» Some phonemes are more difficult to perceive and/or articulate
» These costs should be relatively language independent
» Consider the distinction (Gotelli & Chao, 2013)

Abundance : Frequency of a phoneme in a given language. e.g.,
3.2% of the phonemes in spoken English are
instances of /m/ (the 10*" most frequent)

Incidence : Frequency of a phoneme across languages. e.g.,
96.8% of the world’s languages contain the
contrast /m/ (the most frequent)

» Hypothesis: Incidence and abundance frequencies are correlated
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Possible Costs of Phonemes

“Physical” Costs (articulator

Phonotactic costs

» Human languages are redundant (Shannon, 1951)
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Phonotactic costs

» Human languages are redundant (Shannon, 1951)

» The more a phoneme is predictable from its context, the more
it’s likely to be elided (Cohen Priva, 2015)

» Diachronically this would leave traces in the distribution.
» Hypothesis: more predictable phonemes should be less frequent
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Possible Costs of Phonemes

“Physical” Costs (articulator

Phonotactic costs

» Human languages are redundant (Shannon, 1951)

» The more a phoneme is predictable from its context, the more
it’s likely to be elided (Cohen Priva, 2015)

» Diachronically this would leave traces in the distribution.
» Hypothesis: more predictable phonemes should be less frequent

» Phonotactic surprisal of phonemes (van Son & Pols, 2003)

1(/p/) = (~tog

Frequency(<word onset> + /p/)
Frequency(<word onset> + /k/) /"’
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Lexical costs
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Phonotactic costs

Lexical costs

» Phonemic contrasts serve to distinguish words

» Hypothesis Phonemes need to resolve word indentities
(thonemes X Hwords)
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Possible Costs of Phonemes

“Physical” Costs (articulato

Phonotactic costs

Lexical costs

» Phonemic contrasts serve to distinguish words

» Hypothesis Phonemes need to resolve word indentities
(thonemes X Hwords)
» Lexical surprisal of phonemes

Frequency(<word onset>)

(/ph) = -

Frequency(<word onset> + /p/ )>
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Possible Costs of Phonemes

“Physical” Costs (articulato erceptual)

» Hypothesis: Incidence and abundance frequencies are correlated.

Phonotactic costs

» Hypothesis: Phonemes appearing in more predictable contexts
should be less frequent

Lexical costs

» Hypothesis Hphonemes ¢ Hiwords
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Testing the Hypotheses

> Log-linear Mixed Effects Regression model
Indep. var. : Abundance of a phoneme in a language (log)
Dependent vars.  » Average phonotactic surprisal on UDHR
» (log) Incidence frequency from PHOIBLE
» Average lexical surprisal on UDHR
Random effect: Language variety (and possible random slopes)
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Testing the Hypotheses

> Log-linear Mixed Effects Regression model
Indep. var. : Abundance of a phoneme in a language (log)
Dependent vars.  » Average phonotactic surprisal on UDHR
» (log) Incidence frequency from PHOIBLE
» Average lexical surprisal on UDHR
Random effect: Language variety (and possible random slopes)
> Result (without interactions, and a random slope of phonotactic surprisal)

B t P
Phonotactic Surprisal — 0.23 4.11 0.00 — Phonotactic cost v/
log Pincidence 0.76 22.84 0.00 — Physical cost v/
Lexical Surprisal -0.80 -20.78 0.00 — Lexical cost v/

(Note: log V was residualised out of both other predictors to avoid
collinearity, and all were standardised to N[0, 1] for effect magnitude
comparability.)

UNIVERSITY OF

CAMBRIDGE



From the costs, we guess the phoneme probabilities

7 extreme regression

UNIVERSITY OF

CAMBRIDGE



From the costs, we guess the phoneme probabilities

7 extreme regression

» As in regression, we are given the values of k independent
variables (the costs Cj ;)

» We also have their average values (C; = Ej[¢;])

UNIVERSITY OF

CAMBRIDGE



From the costs, we guess the phoneme probabilities

7 extreme regression

» As in regression, we are given the values of k independent
variables (the costs Cj ;)

» We also have their average values (C; = Ej[¢;])

» Our task is to guess

» the regression coefficients ();) and
» the actual probabilities (p;)
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From the costs, we guess the phoneme probabilities

B Predicted (MaxEnt)
B Observed

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Phoneme Probability

= UNIVERSITY OF

§> CAMBRIDGE



From the costs, we guess the phoneme probabilities

Cuzco Quechua Mapudungun
0251 —s— Predicted (MaxEnt) l —s— Predicted (MaxEnt)
—8— Observed —8— Observed
0.20 4 b
0.15 4 b
£ =
=8 T
0.10 H b
0.05 H b
0.00 H b
T T T T T T T T T T
0 5 10 15 20 0 5 10 15 20 25

Rank (r) Rank (r)
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From the costs, we guess the phoneme probabilities

10-1 4

102 4

10-3 4

Observed Phoneme Probability

1074 4

T
107 1073 107? 107!
Predicted Phoneme Probability (Maximum Entropy)
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We are missing some constraints

3.50 A

3.25 A

3.00

2.75 A

2.50

Observed entropy

2.25

2.00

175 A

T T T T T
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6
Predicted Entropy (Maximum Entropy)
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» “Cost” is a term used in the maximum entropy literature. It
refers to the individual values of constraints.
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» “Cost” is a term used in the maximum entropy literature. It
refers to the individual values of constraints.

» [t does not necessarily correspond to the cognitive concept of
cost.

» This is not evidence for cost optimization or efficiency in the
cognitive sense

» Rather, it is just a way of indicating that some magnitudes
must have a finite mean

» Whether this is the result of evolutionary optimisation is a
different question.
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» Maximum Entropy can reconstruct the distribution of phonemes
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» The distribution of phonemes, in isolation reflects aspects of

» Perceptual/articulatory factors
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» The lexical richness of a language
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Interim Summary (II)

v

Maximum Entropy can reconstruct the distribution of phonemes

v

The distribution of phonemes, in isolation reflects aspects of

» Perceptual/articulatory factors
» The phonotactic structure of a language
» The lexical richness of a language

v

The different representational tiers are interrrelated

v

However, a plain chance analysis seems to achieve the best
reconstruction
» However, the MaxEnt approach is addressing a tougher problem,
not just guessing the probabilities for each rank, but also which
specific phoneme occupies each rank position.
» Entropy is the single crucial aspect of the phoneme distribution
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Back to Symmetric Dirichlet: a Costs Model

H=y(Va+1)+ila+1)
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Back to Symmetric Dirichlet: a Costs Model

@:¢(Va+1) + (o + 1)

/

[ Physical costs }

2B UNIVERSITY OF

% CAMBRIDGE



Back to Symmetric Dirichlet: a Costs Model

=Y(Va+1) +¢(a+1)

/

[ Physical costs } [Phonotactic costs
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Back to Symmetric Dirichlet: a Costs Model

=Y(Va+1) +¢(a+1)

T

[ Physical costs Phonotactic costs Lexical costs }
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Summary

» We are able to compute the distribution of phonemes (not just
fit it)
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Summary

» We are able to compute the distribution of phonemes (not just
fit it)
» From two basic assumptions: Normalisation and symmetry,
» or from considerations on the properties of individual phonemes

» Constraining the probability space works by fixing the entropy
of the distribution to values lower than its maximum.

= UNIVERSITY OF

AMBRIDGE



A Sneak Peak

= UNIVERSITY OF

AMBRIDGE



A Sneak Peak

» This work is part of a larger project, which I call The —right—
end of Zipf’s Laws
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A Sneak Peak

» This work is part of a larger project, which I call The —right—
end of Zipf’s Laws

» In further work, I mathematically demonstrate under which
conditions can power-law and non-power-law distribution of
linguistic structures arise.

» One of the consequences is that what appear as power-laws in
language, are most likely illusions

» This also enables developing a single unified distribution for
linguistic structures at any tier.
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Thank you!

(image by Bob Tubbs, Public domain, via Wikimedia Commons)
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Order Statistics

> General pdf of the k™ order statistic

o () = Gy FOOI 1= FOl” 100, 0<x <.

> Expected value (solved numerically)

E[Xw] :/0 XWM [FOOI 1 = FOO" " F(x) dx.

> Variance & standard error (solved numerically)

1
VarlXol = | Gyt FOOI 1= FOOP ™ 00) de— (BLX0])*
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