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Abstract

Recent advancements in language modelling have achieved impressive results by scaling up parame-
ters and pretraining on ever larger datasets, yet children acquire their first language from just tens of
millions of words. This contrast raises fundamental questions of whether language models can learn
more like humans do: efficiently, incrementally and grounded in perceptual experience. This research
addresses this gap within the framework of the BabyLLM Challenge Vision track, by developing a
cognitively-inspired multimodal framework that learns when and how to leverage visual cues during

language processing without explicit supervision.

In this work, I propose a decoder-based vision-language model with three key innovations. First,
I implement a token-wise dynamic gating mechanism that learns to selectively weigh visual ver-
sus linguistic cues based on context. Second, I investigate feature modulation and channel attention
techniques as solutions to limited visual information under the BabyLM Challenge Vision track con-
straints. Third, I explore contrastive learning auxiliary objectives for visual grounding under low-

resource data regimes.

Experiments on five BabyLM Challenge benchmarks reveal task-specific benefits of my proposed
framework. My base model achieves competitive or superior performance compared to multimodal
baselines, despite using only global image embeddings and significantly fewer training epochs. Most
significantly, statistical analysis demonstrates that the dynamic gating mechanism of my framework
discovers cognitively-meaningful patterns without supervision: models learn to assign more weight
to visual signals for content words (nouns, verbs, adjectives), while relying more on linguistic cues

for function words (conjunctions, auxiliary verbs, particles).

However, my results also reveal that multiple constraints of the BabyLM Challenge Vision track
may be unsuitable for achieving performant vision BabyLLMs. Using only global image embed-
dings represents an information bottleneck that feature enhancement techniques are unable to re-
solve. Contrastive learning auxiliary objectives negatively impact performance under current con-
straints, whereas training models on both ungrounded and visually-grounded text data introduces
training complexity and instability. Furthermore, mismatches between training data and evaluation

benchmarks limit the evaluation of the models.

These findings suggest that while architectural innovations such as dynamic gating can lead to cognitively-
meaningful patterns, significant constraints in visual representation, data curriculum and evaluation
benchmarks must be addressed to bridge the gap between vision-language models and human lan-

guage learning.
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Chapter 1

Introduction

Large language models have achieved impressive capabilities, yet their learning process significantly
contrasts with human language learning. Children learn their first language from just tens of millions
of words (Warstadt et al., 2023; Gilkerson et al., 2017) with minimal supervision, whereas state-of-
the-art language models require three to four magnitudes more data (Warstadt et al., 2023). This
discrepancy raises fundamental questions about the nature of first language acquisition and whether
language models can learn more like humans do: efficiently, incrementally and grounded in perceptual

experience.

The BabyLM Challenge (Warstadt et al., 2023; Choshen et al., 2024; Charpentier et al., 2025) ad-
dresses this gap by constraining language models to train on cognitively-plausible amounts of data,
approximately 100 million words reflecting the quantity a child is exposed to by adolescence (Warstadt
et al., 2023; Gilkerson et al., 2017). While the text-only track has received significant attention, hu-
man language learning is inherently a multimodal process. In particular, visual experiences play a
crucial role in the acquisition of early language and its expansion in the first years of life (Rose et al.,
2009). This cognitive reality motivates my research in the BabyLM Challenge Vision track, where
I develop a framework inspired by human selective attention that learns when and how to leverage

visual cues during language processing without explicit supervision.

Specifically, I develop a cognitively-inspired multimodal framework that learns language from limited
amounts of ungrounded and visually-grounded text in the context of the BabyLM Challenge Vision
track. The base of my approach is a decoder-based vision-language model for which I introduce
three key innovations. First, I implement a dynamic gating mechanism that learns to selectively
weigh visual versus linguistic cues for each token based on context. Second, I explore several feature
enhancement techniques in order to maximise the utility of limited visual information, which is a
constraint of the BabyLM Challenge Vision track. Third, I investigate the impact of contrastive
learning auxiliary objective functions that operate at both the sentence and word levels under low-

resource constraints.
In this research, I aim to answer several key questions:
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1. Can dynamic gating mechanisms be repurposed to learn vision-language fusion patterns that

are cognitively-meaningful without explicit supervision? (Section 3.4)

2. Is the setup of the BabyLLM Challenge Vision track optimal for multimodal learning? In partic-
ular, can architectural mechanisms compensate for the limited visual information provided by

global image embeddings? (Section 3.5)

3. Do contrastive learning auxiliary objectives help or hinder small vision-language models under

significant data constraints? (Section 3.6)

4. Which training and data curriculum strategies best support vision-language models in low-

resource regimes? (Section 3.7)

5. Which linguistic phenomena do my models prioritise visual information for, and does this align

with human word grounding? (Subsection 4.5.2 and Section 5.6)

The experiments I conduct in this work yield several important findings. Performance analysis on five
BabyLM Challenge benchmarks reveals task-specific benefits of my proposed framework, with my
base model achieving competitive or superior performance compared to the multimodal baselines of
the Challenge, despite using only global image embeddings and significantly fewer training epochs
(Section 5.1 and Subsection 5.2.1). More significantly, statistical analysis of the dynamic gating
outputs shows that this mechanism is able to discover cognitively-meaningful patterns without explicit
supervision: the model learns to assign more weight to visual signals for content words (nouns,
verbs, adjectives) and rely more on linguistic cues for function words (conjunctions, auxiliary verbs,
particles) (Section 5.6). These results suggest that vision BabyLMs do not need to be explicitly taught
when to use visual information but rather that the right architecture enables them to discover principles

that align with human cognition independently.

However, my results also reveal that multiple constraints of the BabyLLM Challenge may be unsuitable
to achieve performant vision BabyLMs. Specifically, using only global image embeddings represents
an information bottleneck (Section 6.1.2). Despite exploring feature modulation and channel atten-
tion mechanisms, the model is unable to extract fine-grained visual information from a single CLS
token (Subsection 5.2.2). The global image embeddings also seem to be insufficient for contrastive
learning auxiliary objectives, which negatively impact performance under the current constraints of
the Challenge (Section 5.3). Moreover, the provided training data seems to be misaligned with multi-
ple evaluation benchmarks (Section 5.5 and Section 6.2). Additionally, the split of the training dataset

between text-only and image-caption data introduces training complexity and instability (Section 5.4).

Overall, this work contributes to the broader goal of developing language models that learn more
like humans, not just in terms of data, but also in their underlying mechanisms. While the results
of dynamic gating show that architectural design can lead to cognitively-meaningful patterns, my
findings also reveal which constraints (visual representation, data curriculum, training datasets and
evaluation benchmarks) must be addressed next in order to bridge the gap between vision-language

models and human language learning.



Chapter 2

Background

2.1 BabyLM Challenge

2.1.1 BabyLM Challenge Overview

The BabyLM Challenge (Warstadt et al., 2023; Choshen et al., 2024; Charpentier et al., 2025) is a
shared task focused on developing computational models of first language acquisition that are both
cognitively plausible and data efficient. While state-of-the-art language models are trained on vast
datasets that far exceed the amount of data humans are exposed to, the BabyLLM Challenge restricts
training data to realistic volumes that approximate the quantity from which a child learns its first

language.

The challenge proposes three different tracks that explore language learning under specific con-
straints: text-only, multimodal vision-and-language (referred to as the Vision track), and interaction-
based. In my work, I investigate the Vision track, which incorporates image and text input to more

closely simulate the multimodal nature of first language acquisition.

2.1.2 Vision Track Rules

The Vision track’s rules permit implementing any model architecture, training regime and objective
function that allows inference on image and text input, as long as the training dataset consists of at
most 100 million words, representing an upper limit to the number of words that children are exposed
to by the beginning of adolescence (Warstadt et al., 2023; Gilkerson et al., 2017). For the 2025
BabyLLM Challenge, the authors set a limit of 10 training epochs in order to reduce the emphasis on

access to computing resources (Charpentier et al., 2025), which I also respect in my implementation.

2.1.3 Pretraining Dataset

The BabyLLM Challenge organisers provide an image-text pretraining dataset for the Vision track,

which I use in my work. This dataset consists of two parts: text-only data and text-image data, each
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containing approximately 50 million words.

The text-only dataset is a subset of the training data proposed for the BabyLM Challenge text-only
track. The organisers argue that this dataset is cognitively plausible, consisting of child-directed
speech (CHILDES (MacWhinney, 2000)), dialogue (British National Corpus (BNC) conversation
section', Switchboard Dialog Act Corpus (Stolcke et al., 2000)), children’s stories (Project Gutenberg
(Gerlach and Font-Clos, 2020)), movie subtitles (OpenSubtitles (Lison and Tiedemann, 2016)) and
Wikipedia® content.

The multimodal dataset consists of image-caption pairs selected from the Conceptual Captions 3M
dataset (Sharma et al., 2018), and the MS-COCO (Lin et al., 2014) and Open Images (Kuznetsova
etal., 2020) subsets of the Localized Narratives dataset (Pont-Tuset et al., 2020). The Conceptual Cap-
tions dataset consists of millions of images paired with natural language descriptions automatically
scraped, cleaned and filtered from web image alt-text, while the Localized Narratives dataset contains
image-caption pairs manually annotated with synchronised mouse traces that spatially ground each
word or phrase to specific regions in the image. The images are provided in both raw format and as
visual embeddings computed by a visual model using DINOv2 (Choshen et al., 2024; Oquab et al.,
2023), a state-of-the-art unsupervised learning algorithm. I use these visual embeddings in both my

training and evaluation due to computational constraints.

A breakdown of the number of words and images drawn from each data source is provided in Ap-

pendix E.

2.1.4 Vision-Language Model Baselines

The baselines used in the Vision track are the Flamingo (Alayrac et al., 2022) and GIT (Wang et al.,
2022) vision-language models. Vision-language models combine an image encoder and (optionally)
a text encoder with a multimodal fusion module to learn joint representations for tasks such as cap-

tioning, retrieval, and visual question answering.

The Generative Image-to-text Transformer (GIT) (Wang et al., 2022) architecture consists of an image
encoder and a text decoder. The image encoder is first pretrained using a contrastive learning objec-
tive. The visual features outputted by the image encoder are linearly projected and concatenated with
embedded text tokens to form the input to the decoder. The entire model is then trained using next
token prediction as the objective function, where each token is predicted based on both the preceding

text tokens and the visual features.

Flamingo (Alayrac et al., 2022) is a decoder-based multimodal model that interleaves text decoder
layers with gated cross-attention dense blocks that incorporate visual input. First, an image encoder
extracts visual features from the input images, then a Perceiver Resampler module (Jaegle et al.,
2021) compresses them into a fixed number of tokens per image. These visual features are used as

keys and queries in the gated cross-attention dense layers inserted between language model blocks,

'http://www.natcorp.ox.ac.uk
https://www.wikipedia.org
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where a tahn-gated learnable scalar scales each cross-attention and feed-forward sublayer to control

how much visual information is fused. The proposed objective function for training the model is next

token prediction.

At the time of writing, the Flamingo and GIT models provided in the BabyLM Challenge 2024 are

the only publicly available baselines®, which were trained for 20 epochs on the Vision track training

datasets. I present the training details and analyse the performance of these models in section 5.1.

2.1.5 Evaluation Pipeline

The evaluation pipeline of the BabyLLM Challenge consists of both text-only and multimodal bench-

marks. To evaluate my models, I use the following benchmarks from the BabyLLM Challenge:

BLiMP (The Benchmark of Linguistic Minimal Pairs) (Warstadt et al., 2020) evaluates the lin-
guistic abilities of language models through grammatical acceptability judgements. It consists
of minimal pairs of sentences testing a specific phenomenon in syntax, semantics or morphol-
ogy. Each pair contains one well-formed sentence and one ungrammatical sentence. Models
are evaluated by checking whether they assign a higher probability to the grammatical sentence

in each pair.

BLiMP Supplement is a held-out evaluation set introduced in the BabyLLM Challenge, consist-

ing of five additional linguistic tasks.

Elements of World Knowledge (EWoK) (Ivanova et al., 2024) is a zero-shot benchmark that
targets specific world concepts such as social interactions, spatial relations and physical dy-
namics. It uses minimal pairs of context-target combinations, where the same target sentence
is plausible given one context but implausible given another. Models are evaluated by checking

whether they assign a higher probability to the correct context-target pair.

Winoground (Thrush et al., 2022) evaluates visio-linguistic compositional reasoning in vision-
language models. The dataset consists of hand-curated examples where models must correctly
match two images with two captions that contain identical words but in different orders (e.g.,
“some plants surrounding a lightbulb” vs “a lightbulb surrounding some plants”). Models are
evaluated by checking whether they assign a higher probability to the correct caption given the

input image.

VQA v2.0 (Goyal et al., 2017) is an evaluation dataset containing pairs of similar images with
identical questions but different correct answers, which forces models to ground their responses
in visual content rather than rely on linguistic priors alone. Questions cover multiple categories,
such as object recognition, counting and spatial reasoning. Models are evaluated based on

which answer they assign the highest probability given the input image and question.

Last year’s submissions to the BabyLM Challenge Vision track (Saha et al., 2024; Klerings et al.,
2024; AlKhamissi et al., 2024) did not beat the Flamingo and GIT baselines (Hu et al., 2024).

Shttps://huggingface.co/babylm
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2.2 Multimodal Artificial Intelligence

Multimodal Artificial Intelligence (AI) aims to replicate the human ability to perceive and integrate
information from different sensory channels to form a prediction or decision (Xu et al., 2023; Bal-
truSaitis et al., 2018). Each sensory ability is generally associated with a specific modality, and a key
aspect of human cognition is the brain’s capacity to fuse information from distinct modalities into

rich representations in order to understand and interact with the world (Zhao et al., 2024).

Research in cognitive sciences suggests that vision contributes to first language acquisition and lan-
guage understanding. Rose et al. (2009) propose that basic visual cognitive processes in infancy play
a role in the acquisition of early language and its expansion between ages one and three. As infants’
motor control increases, it dramatically expands their visual access to the world and objects, which,
alongside caregiver language, aids in associating words with what they see (Clark and Casillas, 2015).
Therefore, in my research, I explore multimodal Al, specifically vision-language models, as compu-

tational models of first language acquisition in the context of the BabyLM Challenge.

In this section, I provide an overview of vision-language models (VLMs), focusing on architecture,

image tokenisation and embeddings, multimodal fusion and model training.

2.2.1 Core Components of Vision-Language Models (VLMs)

The transformer architecture has become the widely adopted architecture in vision-language models,
due to its modality-agnostic nature, flexibility and ability to generalise (Xu et al., 2023). These models
treat the textual data as tokens and the visual data as token-like input, which enables them to leverage
the attention mechanism of transformers and model complex inner- and cross-modal relationships.
Although specific vision-language models (VLMs) vary, most share four principal components (Li
et al., 2025):

1. Vision Encoder: project raw images (or video frames) into a sequence of embedding features
that align with language model embeddings. It is often implemented as a Vision Transformer

(ViT) patch encoder, and it is pretrained on rich visual datasets (Dosovitskiy et al., 2020);

2. Text Encoder: converts text input into textual embeddings. Early VLMs such as CLIP (Rad-
ford et al., 2021), BLIP (Li et al., 2022) and ALIGN (Jia et al., 2021) employ transformer-based
text encoders and train both the vision and the text encoders jointly using contrastive learning
to align visual and textual representation in a shared latent space (Li et al., 2025). However,
more recent models such as LLaVA (Liu et al., 2023) no longer employ a separate text encoder,

but simply use a visual encoder with a text decoder;

3. Cross-attention Mechanism: dynamically fuses modalities by computing attention scores be-

tween image and text tokens;

4. Text decoder: generates language outputs conditioned on the fused multimodal features.

13



2.2.2 Tokenisation of Images and Image Embeddings

To input images into a transformer, they must first be tokenised and projected into the model’s em-

bedding space (Li et al., 2025). There exist two common embedding representations:

1. Global embedding (course-grained): the entire image is mapped to a single embedding

vector representing a global view of the image;

2. Patch-based embedding (fine-grained): the image is divided into fixed-size patches (e.g.,
16x16) (Dosovitskiy et al., 2020), each of which is then projected by the image encoder to form
a token embedding.

2.2.3 Multimodal Fusion

As aforementioned, the attention mechanism is a core component of standard vision-language models,
used to fuse the data sourced from different modalities. In the multimodal Al literature, there are three

types of fusion defined based on the level at which they occur (Zhao et al., 2024):

1. Early fusion: inputs from different modalities are combined together before before being fed

to the model;

2. Intermediate fusion: features first extracted separately by unimodal encoders are fused and

then inputted to the model to generate a prediction/decision;

3. Late fusion: separate unimodal models generate independent predictions/decisions, which are

then fused in a final step, e.g., weighted average.

Cross-attention, originally introduced in Flamingo (Alayrac et al., 2022), is an example of intermedi-
ate fusion and has become one of the primary multimodal fusion approaches (Zhao et al., 2024) over
older, more naive fusion operations such as concatenation or addition. Cross-attention follows the
same formula as the original self-attention (Vaswani et al., 2017), with the difference that the queries
(Q) come from one modality (typically text), while the keys (K) and values (V) originate from the

other (image):

Qtext Kfng
CrOSSAttn(Qtext, Kimg7 ‘/img) = Softmax T ‘/img- (21)
k

where dy = dinodel/Theads 1S the dimension of each attention head. Alternatively, some state-of-the-art
models, including GIT (Wang et al., 2022), Qwen-VL (Bai et al., 2023), DeepSeek-VL (Lu et al.,
2024) and Idefics2 (Laurencgon et al., 2024b), simply concatenate image tokens with text tokens and

apply standard self-attention over the combined sequence.

2.2.4 Pretraining of VLMs

In general, multimodal models are trained using self-supervised objectives (Xu et al., 2023), analo-

gous to language-only models. Moreover, previous work suggests that multi-task training improves
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the pretraining of the multimodal transformers (Lu et al., 2020; Xu et al., 2023). Some commonly used
losses include masked language modelling, next token prediction, contrastive learning and image-text
matching (ITM) (Xu et al., 2023).

Some models adopt a two-stage pretraining regime, where they first pretrain the vision and/or lan-
guage encoders separately, then end-to-end, e.g., GIT (Wang et al., 2022), VILBERT (Lu et al., 2019),
VL-BERT (Su et al., 2019), while others perform pretraining in one stage e.g., Pixel-BERT (Huang
etal., 2020), SimVLM (Wang et al., 2021). Since the advent of Frozen (Tsimpoukelli et al., 2021) and
Flamingo (Alayrac et al., 2022), most VLMs build upon large pretrained unimodal backbones (a vi-
sion encoder and/or large language model), connecting them via cross-attention or joint self-attention
layers rather than training the entire model from scratch (Laurencgon et al., 2024a; Koh et al., 2023; Li
et al., 2023; Liu et al., 2023).
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Chapter 3

Method

3.1 Overview

In this chapter, I present a cognitively-inspired multimodal framework for the BabyLLM Vision track
that learns language from both ungrounded and visually-grounded text data. My approach differs from
existing language-vision models by prioritising cognitive plausibility over raw performance metrics.
Specifically, I develop a dual-stream transformer architecture with three key innovations that

aim to mirror human language processing:

1. Cognitive alignment through dynamic gating: Unlike standard vision-language models that
use uniform fusion strategies, I implement a token-wise dynamic gating mechanism (Section
3.4) with four variants exploring different granularities and decision levels. This mechanism
learns to adaptively weight visual versus linguistic information for each token, aiming to mirror
how humans selectively integrate multimodal information. For example, humans may rely more

heavily on visual context for concrete words than abstract concepts.

2. Maximising limited visual information: Given the constraint of using only a global image
embedding during training, I implement multiple strategies to compensate for the limited visual
information (Section 3.5). These include modulation techniques that dynamically transform
features based on cross-modal context, and a channel attention mechanism to identify salient

aspects within the limited visual representation.

3. Visual grounding via auxiliary objective functions: I explore two auxiliary objective func-
tions to enhance visual grounding in my framework (Section 3.6): (1) a contrastive learning
objective (Radford et al., 2021) which aligns entire captions with images at the sentence level,
and (2) LexiContrastive Grounding (Zhuang et al., 2024), which performs word-level alignment
between individual tokens and images. While I evaluate my models on general language and
multimodal benchmarks (Section 5.3), these auxiliary objectives aim to improve overall lan-

guage learning by creating stronger associations between linguistic and visual representations.

Moreover, I explore multiple data curriculum strategies (Section 3.7) that could optimise learning in
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my proposed framework.

3.2 Motivation

Motivated by cognitive theories of language acquisition and the constraints of the BabyLLM Challenge,
I propose a novel framework for the BabyLM Vision track. State-of-the-art vision-language models,
such as Flamingo (Alayrac et al., 2022) and GIT (Wang et al., 2022), have been designed to predom-
inantly rely on large-scale components pretrained on vast amounts of data (Laurengon et al., 2024a).
However, this approach significantly contrasts with the cognitive plausibility and data efficiency goals
of BabyLMs.

Previous submissions to the BabyLLM Vision track (Saha et al., 2024; Klerings et al., 2024; AlKhamissi
et al., 2024) built upon the Flamingo and GIT architectures without significantly modifying them to
align with the constraints of the challenge. 1 hypothesise that these models, originally introduced to
be trained on large datasets, lack explicit cognitive motivation and may have performance limitations

when scaled down, which leaves substantial room for improvement.

In my framework, I adopt a different approach by making informed architectural and training deci-
sions that optimally utilise the data available, while also being cognitively inspired. Therefore, my
problem statement is that the training data and number of training epochs are fixed according to the
BabyLLM Challenge constraints, and the architecture and training regime are variables which I aim to

improve.

On the technical side, I start with an autoregressive transformer-based architecture that is able to
process both text-only and image-caption data, for which I justify my implementation and hyperpa-
rameter choices. As features of my model, I explore dynamic gating to improve text and image data
fusion and integrate cross-modal modulation strategies in order to enhance feature representation.
Moreover, I incorporate contrastive learning objectives at both sentence and word levels motivated by
prior work showing that multi-task learning improves the performance of vision-language models (Lu
et al., 2020). On the cognitive side, I motivate my dynamic gating feature as a mechanism mimicking
selective attention, allowing the model to decide how much to rely on linguistic or visual context for
each token. This is particularly important for benchmarks like VQA (Goyal et al., 2017), which chal-
lenge models to reject both ungrammatical and implausible answers. The cognitively-inspired moti-
vation behind using auxiliary contrastive learning objectives is to improve word acquisition, drawing
on research in cognitive science, which shows that visual access to objects and the environment plays

a crucial role in early language learning (Clark and Casillas, 2015).

Furthermore, I investigate which training data curriculum strategies best support my framework under
the BabyLM Vision track constraints. At a coarse-grained level, I alternate between text-only and
image-caption epochs in order to facilitate my choice of auxiliary objectives. At a fine-grained level,
I explore how mixing text-only and image-caption data within the same batch, either uniformly or

non-uniformly, impacts the training dynamics and generalisation of the model.
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Overall, my motivation is based on both cognitive plausibility and computational constraints. The
components I introduce in this framework represent a step towards models that learn more like humans
do, while contributing to the goals of the BabyLLM Vision track and to the broader efforts of building

more interpretable and cognitively-plausible language models.

3.3 Base Architecture

I design an autoregressive dual stream transformer as the core model for my framework, drawing
inspiration from the architecture of state-of-the-art vision-language models such as LLaVA (Liu et al.,
2023) and QWen-VL (Bai et al., 2023). In the following sections, I introduce several features that I
build upon my base model aimed at improving both its performance and cognitive plausibility under
the constraints of the BabyLM Challenge Vision track. A high-level design of the model is illustrated

in figure 3.1.
=l Text Embedding / [ Self-attention ]
Text J/
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Figure 3.1: Simplified dual-stream architecture. The text processing stream (top) embeds text input
tokens into a dpoqe-dimensional space and feeds them through an /N-layer transformer decoder, which
applies masked self-attention, cross-attention to image features and a dynamic gating module to fuse
representations. The image processing stream (bottom) projects a DINOv2 CLS token into the same
dmode-dimensional space and processes it with an M -layer transformer encoder. Residual connec-
tions, normalisation and feed-forward layers are omitted for clarity. The image processing stream,
cross-attention and gating modules are skipped for text-only samples.

3.3.1 Core Components

My architecture consists of four main components that enable efficient multimodal learning:

Text Processing Stream. The core of my model is a decoder that processes text input through
learned embeddings. I implement a standard text embedding module which combines token em-
beddings with positional encodings, followed by layer normalisation for training stability. The text
stream processes the text data from the text-only dataset as well as the captions from the image-caption

dataset.
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Image Processing Stream. For the visual input, I use the DINOv2 embeddings provided by the
BabyLM Challenge, where each image is encoded as a 768-dimensional CLS token. This equates
to adding an external pretrained frozen image encoder to my model. A linear layer projects these

pretrained visual features into the model’s hidden dimensional space.

Despite working with a single global image representation rather than a sequence of patch tokens, I
implement a dedicated image encoder after the pretrained frozen DINOV2 one, consisting of trans-
former encoder layers. Reasons include direct comparison and compatibility with future iterations
of this framework using patch-token image embeddings, empirical performance and computational

efficiency (compared to alternatives), which I detail in Appendix C.

Multimodal Decoder. The core of my base architecture is a stack of multimodal decoder layers that

integrate text and image features through the following three mechanisms applied in sequential order:

1. Multi-head masked self-attention: I apply standard causal self-attention to the text stream. Be-
cause my current image input is a single token, it cannot benefit from self-attention. However,
future iterations using patch tokens should apply non-causal self-attention to the image input for
a richer representation, either in the image encoder or in the multimodal decoder if the image

encoder is skipped.

2. Multi-head cross-attention: When image input is available, I perform cross-attention fusion
between the text and image features; otherwise, this step is skipped. Cross-attention has been
shown to yield superior performance and has become the standard fusion technique in state-of-
the-art VLMs (Zhao et al., 2024). The queries originate from the text, while the keys and values

are extracted from the image representation.

3. Dynamic gating: Following cross-attention, I apply a dynamic gate that adaptively determines
how much to rely on visual versus linguistic information for each token. While cross-attention
computes attention weights over the image, determining what visual features are relevant, my
gating mechanism makes a complementary decision: given those attended features, how much
should they influence the text representation? I provide a detailed description of the gating

mechanism, including other gate variants, in Sections 3.4 and 4.1.

Output Projection. A final layer projects the decoder outputs back to the vocabulary space for next

token prediction.

3.4 Dynamic Gating

While dynamic gating in multimodal Al has primarily focused on classification tasks, demonstrating
improved robustness and computational efficiency (Xue and Marculescu, 2023; Wang and Wang,
2024; Xie and Zhang, 2020), I ask whether this idea can be repurposed as a cognitively-motivated

mechanism for token selection in multimodal autoregressive models.
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Research in human cognition found that abstract words primarily activate language-related brain re-
gions, whereas concrete words engage perceptual brain areas (Wang et al., 2010, 2018). Further work
(Anderson et al., 2017) showed that functional Magnetic Resonance Imaging patterns for concrete
nouns can be decoded by both linguistic and visual representations, but abstract nouns are only de-

codable via linguistic representations (Wang et al., 2018).

Drawing inspiration from these findings, my hypothesis is as follows: just as human language pro-
cessing selectively integrates visual information, for example, relying heavily on visual inputs for

29 Gé

concrete, perceptual words (e.g., “dog”, “red”) while defaulting to linguistic knowledge for abstract
terms (e.g., “therefore”, “impossible”), a token-wise dynamic gating mechanism could teach a model
to make similar fine-grained fusion decisions. By conditioning each gate on both the current text hid-
den state and the cross-attention features, the model can learn to amplify the vision input when it truly
informs the next word and ignore it when it does not. This approach contrasts with Flamingo’s gated
cross-attention dense blocks, which apply uniform layer-wise gating parameters across all tokens, and

are thus unable to adapt based on individual token semantics.

I implement four variants of a dynamic gating mechanism, varying along two axes: (1) granularity,
whether the gate is computed per feature or per token, and (2) soft vs hard, whether the gate outputs
continuous weights or discrete decisions. The granularity axis investigates whether different tokens
require different subsets of visual features (e.g., colour features for “red”, spatial features for “above”)
or whether coarse per-token gating is sufficient for effective vision-language fusion. The soft vs
hard gating axis examines whether binary selection (fully using or discarding features) or continuous
weighting of features yields more interpretable fusion patterns and better performance. Figure 3.2

illustrates the conceptual output for each type of gate.

Soft Gate per Feature

o N O B
Textual Representation
| | | l | | | Soft Gate per Token

O

Hard G F
It t
Cross-attention Representation ard a’e per Feature

(T TT.CT] EREREYE

Hard Gate per Token

HREREEE

Figure 3.2: Conceptual output of different gating strategies for fusing textual and cross-attention rep-
resentations. Each rectangular box represents a token, with the cells within representing dimensions.
Red represents textual features, green represents cross-attention features and mixed colours represent
fused features. Soft gates apply continuous weights, while hard gates make binary decisions, either
per-feature (each dimension independently) or per-token (all dimensions together).

The technical implementation details for the four gating variants are available in Section 4.1.
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Wang et al. (2018) asked a similar question about how to dynamically weigh linguistic and visual
input based on word type. However, their goal was to create static word embeddings relying on
weak supervision. In contrast, I propose using dynamic gating as an unsupervised mechanism during
autoregressive generation, where the model decides at each step which modality should produce the

next token.

3.5 Feature Representation

The BabyLLM Challenge constraint of using only a global CLS token, while computationally efficient,
limits the spatial visual information available to the model. Traditional vision-language models ben-
efit from patch token representations that preserve spatial information and enable fine-grained visual
grounding. Therefore, the next aspects I investigate in my framework are methods of maximising the
utility of the CLS token. I explore two complementary modulation techniques, FiLM (Perez et al.,
2018) and Dylntra (Gao et al., 2019), which dynamically reshape one set of features based on an-
other, as well as a global channel-attention enhancement. These approaches target different aspects of
the representation bottleneck: modulation techniques address cross-modal feature interaction, while
channel attention addresses intra-modal feature refinement. I evaluate these methods at several inte-
gration points within my architecture to determine which approach most effectively compensates for

the lack of spatial visual information.

Motivation for modulation. While my dynamic gating mechanism determines how much informa-
tion to incorporate from each modality, FiLM and DyIntra determine #ow that information should be
transformed. I hypothesise that this complementary component to my framework allows the model to

learn richer fusion strategies.

Motivation for channel attention. I investigate whether sharpening some of the signals in the
global CLS embedding can enhance its utility. Therefore, I implement a channel attention mechanism

to determine what is meaningful within the image features.

The technical details of the feature modulation and channel attention enhancements I implement in

my framework are available in Section 4.2.

3.6 Objective Functions

As previous work in vision-language models suggests (Lu et al., 2020), a multi-task objective can
improve the model’s performance. Therefore, in my framework, I explore training my models using
two auxiliary functions, Contrastive Language-Image Pre-training (CLIP) (Radford et al., 2021) and
LexiContrastive Grounding (LCG) (Zhuang et al., 2024). Both functions aim to ground textual repre-
sentations in visual concepts through contrastive learning, creating a shared embedding space where

semantically related image-text pairs are positioned closer together. However, they operate at differ-
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ent levels of granularity: CLIP aligns entire captions with their corresponding images at the sentence

level, while LCG performs alignment at the word level between individual tokens and images.

My choice for these auxiliary functions is cognitively-motivated, as recent research shows that vi-
sual grounding at both sentence and word levels can improve word acquisition in low-data regimes
(Zhuang et al., 2023). A CLIP objective could capture global associations that support contextual un-
derstanding, while an LCG objective might reflect fine-grained grounded learning. By investigating
these objectives, I explore whether an explicit contrastive mechanism can enhance language learning
under the constraints of the BabyLLM Challenge. However, as I discuss in my results (Section 5.3),
the effectiveness of these auxiliary objectives significantly depends on various factors, including the

visual representation format, batch size and training data.

The technical details of each auxiliary objective function as implemented in my framework are avail-
able in Section 4.3.

3.7 Data Curriculum

Since the training dataset consists of both text-only data and image-caption data, each accounting for

5S0M words, I implement and analyse the following data curriculum strategies in my training:

* Coarse-grained epochs: I load the text-only and image-caption data in separate PyTorch
(Imambi et al., 2021) data loaders, where each data loader alone is used for one epoch. For
the 10 epochs constraint of the BabyLM Challenge, this results in 10 text-only epochs and 10

image-caption epochs. I then experiment with the following:
1. Alternating between image-caption epochs and text-only epochs;
2. Training on all text-only epochs first, then on the image-caption epochs;
3. Training on all image-caption epochs first, then on the text-only epochs.

* Fine-grained epochs: For the fine-grained epochs, I define the following two training strate-

gies:

1. I'load both the text-only data and the image-caption data in the same data loader, where I
pair the text-only data with image tensors filled with Os for uniformity. The cross-modality
path is still skipped in the text-only samples. The original text data is provided in .zxt files,
and I process each text line as one sample. For the image-caption data, I process each
(image, caption) pair as one sample. In this setting, the text-only data has twice as many
samples as the image-caption data. Therefore, loading and shuffling them in the same data

loader results in a non-uniform distribution between the two and more unstable training.

2. For a uniform distribution between the image-caption data and the text-only data, I take
inspiration from the GitHub repository ' used to train the BabyLM 2024 Challenge base-

'mttps://github.com/aaronmueller/babylm multimodal_training
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lines, where the authors pair each text-only input with one image-caption input in the
same batch sample, resulting in uniform batches. Therefore, in one training step, I per-
form two forward passes: one using the text-only input and one using the image-caption
input. I then sum the losses from each pass and do one backward propagation using the
total loss. However, since there are twice as many text-only samples than image-caption
samples, this results in training the model twice on the image-caption dataset. For 10

training epochs, this equals 10 text-only epochs and 20 image-caption epochs.

For a fair comparison among all of the methods I implement in this work, I alternate between text-only
epochs and image-caption epochs in my experiments exploring architectural changes and auxiliary
objective functions. That is because the contrastive learning objective functions compute similarity
scores between a caption and all the images in a batch. If the batch contains (many) text-only samples,
it cancels the effect of the auxiliary losses. Moreover, the empirical results I obtain in section 5.4

support this choice among the data curriculum strategies I define.
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Chapter 4

Design and Implementation

In this chapter, I present the technical implementation details for the three components I explore
in my multimodal framework: dynamic gating (Section 4.1), feature representation enhancements
(Section 4.2) and auxiliary objective functions (Section 4.3). In Section 4.4, I provide details about
the implementation of my models, training setup and data preprocessing, followed by the evaluation

pipeline in Section 4.5.

4.1 Dynamic Gating

For my framework, I define four dynamic gating variants that operate at different granularity and

decision levels: soft gate per feature, soft gate per token, hard gate per feature, hard gate per token.

Input and Output. All four versions of the dynamic gate have the same input and output. Let Ay €
RE*T>dmoel he the text hidden states after self-attention and Arossaqn € RP*T*dmeset be the output of the
cross-attention between text and image, where B is the batch size and 7' is the sequence length. Then,
the input to the dynamic gate is the concatenation of two hidden representations, [Aext; Rerossatn] €
RBxT>2dmoae - The output is represented by Agyeq € RE*T*dmeael which combined the pure linguistic
representation with the visually-enriched representation based on the gating weights. In the case of a
text-only input to the model, the dynamic gate module is skipped, and A flows directly through the

residual connection.

4.1.1 Soft Gate per Feature

This variant computes a continuous weight for each feature dimension i € {0, ..., dyogel — 1} using

the sigmoid function. Concretely, the gate vector is computed as:

9= J(Linear [ htext; hcrossAtm ]) € [0, 1]BXTde°del (41)
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The dynamically fused representation is then calculated as:

hfused =4 © htext + (]- - g) © hcrossAttn (42)
I use this variant of dynamic gating in the base model.

4.1.2 Soft Gate per Token

The soft gate per token calculates a single continuous weight (a scalar), which I apply to all features

in the hidden representations:

g = U<Linear([ Prex; hcrossAttn} )> € [0, 1]BXTX17
(4.3)

Pused = 9 © Dyext + (1 - g) © herossatn

4.1.3 Hard Gate per Feature

Drawing inspiration from Xue and Marculescu (2023), I extend the soft gating variants to a hard

selection mechanism using the Gumble-Softmax reparametrisation trick (Jang et al., 2016).

The hard gate per feature variant enforces each dimension to choose completely between linguis-
tic or visually-enriched representations. I first compute a 2-way discrete choice for the two hidden

representations using a linear layer:

g = Linear ([ htext; hcrossAttn ]) € [07 1]BXTde0del x2 (44)

Each pair of logits ({40, [yt 1) corresponds to the scores for “use hiex” versus “use Acrossattn” fOr

feature ¢ at position (b, t). A straightforward hard gate would then be:

Goti = argmax(lysi0, lrin) 4.5)

However, since ¢ is a one-hot vector, it is not differentiable. Therefore I employ a soft gate g during
training using Gumble-Softmax, similar to Xue and Marculescu (2023), to enable back-propagation:
lotij+ 2ot

Zb,t,i,j == 2145 ~ Gumbel(0, 1) (4.6)

where 7 is the Softmax temperature. I then apply Softmax over the two classes and select the proba-

bility corresponding to hi.y as the soft gate:

PP, . U1T) R N S @7
o lec:o €Xp (lb,t,z',k)
Goti = Yprio, § € [0,1]F*T<dmoa 45)
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hfusea 18 then be computed as:

hfused - § ©) htext + (]- - g) © hcrossAttn (49)

During training, I anneal the Softmax temperature 7 from 1.0 to 0.1 over 80% of the training steps
of an image-caption epoch, gradually transitioning from soft to nearly discrete selection. During

inference, I convert g to a true one-hot gate g using arg max.

4.1.4 Hard Gate per Token

In the per token variant of the hard gate, I collapse the feature-wise gate into a single binary decision.
The calculations, training and inference remain the same as in subsection 4.1.3, yet the shape of the

parameters changes. The summary of the calculations in this variant is as follows:

[ = Linear([ htext; hcrossAttn}) S RBXsz (410)
y = GumbelSoftmax (I, 7) € RP*7*? 4.11)

Got = Yoo € [0,1] (4.12)
hfused - g ©) htext + (1 - g) ® hcrossAttn (413)

where the scalar g is broadcasted over all d,,oq4¢; features.

4.2 Feature Representation

4.2.1 Feature-wise Linear Modulation (FiLM)

To address the limited representational capacity of a single CLS token, I incorporate Feature-wise
Linear Modulation (FiLM) (Perez et al., 2018) as an intra-modal conditioning mechanism. FiLM
modulates neural network features through a feature-wise affine transformation, enabling one modal-
ity or context to dynamically influence another. Specifically, it applies scaling and shifting to a feature

map based on a conditioning input, and can be easily implemented in transformers as follows:

Let Ay, him, € RBXT*dnott be hidden state feature representations with m; indicating the primary

features and my the conditioning features, m; # msy. Then,
FiILM (R, hiny) =75 @ humy + (4.14)

where 7, 3 € RP*T*dmuet gre scaling and shifting parameters predicted by linear layers from /,,,.
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4.2.2 Dynamic Intra Modulation (DyIntra)

Alternatively to FILM, I explore the DylIntra module proposed in (Gao et al., 2019), a scaling mech-
anism that modulates primary features using conditioning features via a simple gating mask. DyIntra
predicts a positive-only gain for each representation, allowing it to boost its own hidden features based

on cross-modal context without shifting.

Formally, let A, , h,,, € RB*T*dww be hidden state feature representations, m; # ms. Then,
DylIntra computes:
m = o(Linear(my)) € [0, 1] dmoae (4.15)

DyIntra (i, , hiny) = (1+m) © hy, (4.16)

Choosing m; and ms. There are several points in my base model where I could integrate a FiLM

or DyIntra modulation module. I evaluate and motivate three such choices as follows:

1. m; = self-attention (output), ms = image: modulating the text self-attention output with visual
features may allow the model to adjust how text tokens relate to each other based on visual

context;

2. my=cross-attention (output), mo = image: modulating cross-attention features with the original
image may refine the vision-language fusion by emphasising features that align with the global

visual representation;

3. m; = image, mo = text: modulating image features based on textual context may allow the
model to dynamically highlight relevant visual information for the current linguistic processing

needs.

4.2.3 Channel Attention

To implement channel attention for only one image token, I use the Excitation formula from the
Squeeze-and-Excitation method (Hu et al., 2018) as follows:

Pinage = oW RELU (W' Biage) ) © himage, Wi € RUesa/75onst) Y17, @ Rt /1) (4.17)

image

where Ajpmqge 1s the output of the image encoder and r = 16 is the reduction ratio. I expect this
method to help the model focus on the most informative features of the visual embedding, improving

the quality of image representations.

4.3 Objective Functions

4.3.1 Contrastive Language-Image Pre-training (CLIP)

I incorporate CLIP’s objective function into the training of my base model for image-caption epochs

steps, as follows:
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For each sample in a batch, I first extract pooled representations from both image and text modalities.
For text, I compute mean pooling over the the output of the text embedding module, which I denote
Tpooled- FFOT the image, I use the output of the image encoder directly as its length is 1, ipgotea. Both ¢p001ed
and ¢p001cq are then projected to a shared contrastive embedding space through specific linear projection
layers. I L2-normalise both representations before computing similarity scores. The contrastive loss
is formulated as a bidirectional InfoNCE objective (Oord et al., 2018) with learnable temperature 7.
It combines text-to-image and image-to-text matching losses, where each direction maximises the
similarity between matched pairs while minimising similarity with all other pairs in the batch. The

final loss is computed as Longastive = %(ﬁtgi + Li).

The complete training objective then becomes:

Ltotal - LNTP + /\Econtrastive (418)

where A\ represents the weight of the contrastive loss and N'I"P stands for next-token prediction.

In my experiments, I initialise 7 to 0.07 and constraint it between 0.05 and 1 during training for
stability, and set A to 1.

4.3.2 LexiContrastive Grounding (LCG)

LexiContrastive Grounding (LCG) (Zhuang et al., 2024) is a training procedure that implements a
grounded language learning objective similar to CLIP. While CLIP operates at sentence level, LCG
computes similarity scores at the word level. To calculate the cross-modality contrastive learning
loss, LCG leverages the first hidden layer of a model, which stores lexical information. The authors
also limit the attention mask applied to the first layer to a previous two-word window in order to
encode less linguistic context. The contrastive loss is then calculated per batch from all the token-

level representations outputted by the first layer.
For my model, I adapt and implement the LCG during the image-caption epochs as follows:

Let (text;, image;) represent the image-caption pairs in a batch, where i € {1,2,...,n} and n is the

batch size. Each caption text; contains m; tokens: (¢;1,t;9,...,tim,)-

To obtain lexically-focused representations, I extract the textual representation from the first layer

after the residual connection applied to self-attention:
hi (text;) = text; + SelfAttn(LayerNorm(text;)) (4.19)

In my implementation, I experimented with applying a narrow two-word attention mask, however, I
noticed conflicts with the next token prediction loss. Specifically, applying the two-word attention
mask in the first layer was preventing the next token prediction loss from decreasing. I tried applying
the two-word attention mask solely to extract the hidden representation, then switching to the original

causal mask for the rest of first layer’s forward pass, as well as skipping the cross-modal fusion in
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the first layer, but neither approach fixed the problem. Therefore, I decided to use the standard causal
attention mask when extracting the first layer textual hidden representation, as ablation studies in the

original research (Zhuang et al., 2024) did not indicate a significant loss in performance for this case.

Let hy (text;, j) € R be the first layer representation of the j-th token (the j-th row of the matrix)
in the i-th caption and enc(image;) € R%w represent the output of my image encoder for the i-th

image. Then, the matching score between the j-th token in the caption £ and image ¢ is calculated as:

( Mimage - enc(imagei))T o (Miex - ha(texty, j))
T

s(i,j, k) =

(4.20)

where Mimage, Miext € Rmosedmosel are Jearned projection matrices and 7 is a learnable temperature

parameter, which I clamp between [0.05, 2.0] for training stability.

For each valid token position, I then compute the LCG contrastive learning loss as:

n m;

1
Licc = Z Z Lyaiia(7,7) - 3 [61(i, ) + (3, )] 4.21)

i=1 j=1

where 1,,i4(7, j) is an indicator function for non-padded tokens, and:

o | 5(i:4:0) i | 5(6,4,1) 497
1(i,7) = — nga 2(1,7) = — Ogm- (4.22)
The negative term neg(, j) is defined as:
neg(i, j) = ") +3 Y "Lk, 0) - e*0H) (4.23)
i
The total loss combines next-token prediction with word-level contrastive learning loss:
Liota = Lt + A Lica (4.24)

where A is a hyperparameter controlling the strength of visual grounding. I set A to 0.3 through trial

and error such that Lytp and £ g have the same magnitude.

I use auxiliary functions only during the image-caption epochs, as the image processing stream is

skipped for text-only samples.

4.4 Experiments Setup

For all architectural features and training strategies I define in subsections 3.4-3.7 and 4.1-4.3, 1
conduct experiments in the form of ablation studies in order to evaluate each potential improvement
in isolation. I select my base architecture, described in section 3.3, and define one experiment per

feature. I train each enhanced model in the same conditions and evaluate it on the BabyLLM Challenge
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benchmarks: BLiMP, BLiMP Supplement, EwoK, Winoground and VQA.

I describe the base model implementation details in subsection 4.4.1 and the training regime I use in

Subsection 4.4.2. A summary of all the experiments I define is available in Appendix B.

4.4.1 Base Model Implementation Details

I implement the dual stream transformer in PyTorch (Imambi et al., 2021), following the architecture

I introduce in section 3.3. I summarise my hyperparameter choices for the base model in Appendix
A.

I use pre-layer normalisation rather than post-layer normalisation in my implementation as previous
research shows that pre-layer normalisation provides better training stability for networks larger than
six layers (Takase et al., 2022), which is crucial given my limited training budget and inability to

perform extensive hyperparameter searches.

Following standard transformer design, I use residual connections around each sub-layer (feed-forward

networks, self-attention and cross-attention).

While the image encoder may be over-parameterised for single token processing, empirical results
validate this choice (Appendix C), and it ensures architectural consistency and directly comparable

results for future extensions to patch-based visual inputs.

4.4.2 Training Details

I train all of my models using the hyperparameters summarised in table 4.1, with the exception of a
few changes for the auxiliary objective function and data curriculum experiments. In the case of the
auxiliary objective function experiments, I increase the batch size from 64 to 128 as a larger batch size
is recommended for contrastive learning (Chen et al., 2020), which results in a total of 553,510 steps.
Due to computational constraints, I was not able to select a larger batch size. In the case of the data
curriculum experiments, the data order differs according to the strategy I define for that experiment.
For the model trained using LexiContrastive Grounding as the auxiliary function, I use weight tying

as recommended in the original work (Zhuang et al., 2024).

I select a learning rate of Se-5 to ensure training stability, despite this being conservative for the
model size. While alternating between text-only and image-caption epochs improves performance on
my benchmarks (as shown in section 5.4), this training regime can cause gradient instability when

transitioning between epoch types. Therefore, I adopt a lower learning rate to mitigate this risk.

4.4.3 Data Pipeline Details

The text-only training dataset is provided in .zxt files, while the multimodal one is provided in .json
files for the captions and .npy for the image embeddings, where each row in the numpy array embeds

one image as a CLS token of dimension 768. I load the text-only data as one training sample per line,
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Training Hyperparameter  Value

Data order Alternating between text-only and image-caption epochs
Number of epochs 10 text-only and 10 image-caption

Total number of steps 1,107,020

Checkpoints saved Every 50,000 steps

Batch size 64

Learning rate Se-5

Learning rate schedule Cosine annealing

Optimiser AdamW with 5; = 0.9, 85 = 0.999,¢ = 1le — 8
Number of steps for warmup ~1%

Weight decay 0.01

Gradient clipping norm 1.0

Main loss function Cross-entropy

Random seed 42

Table 4.1: The hyperparameters list for my base training regime.

and the image-caption data as one (image, caption) pair representing one training sample. I do not

perform any preprocessing on either data.

For the text-only data and the captions, I tokenise the text using the GPT-2 tokeniser (Radford et al.,
2019), as my model is autoregressive. I also add the BOS and EOS special tokens at the beginning

and end of each text-only/caption sample, respectively.

I split the data into 80% training, 10% validation and 10% held-out test sets. In order to ensure
that all models are trained on the same data, I save the data split indices and reuse them for all
experiments. I shuffle the training dataset independently for each run while maintaining consistent

train/validation/test partitions.

4.5 Evaluation Pipeline

4.5.1 Performance Scores

To evaluate my framework, I select five of the benchmarks proposed in the BabyLM Challenge:
BLiMP and BLiMP Supplement for grammar, EWoK for world knowledge, Winoground for vision-
linguistic compositional reasoning and VQA for image-based question answering. I provide a detailed

description for each benchmark in subsection 2.1.5.

I follow the same approach as the BabyLLM Challenge 2024 evaluation pipeline', using the Im-harness
library?, which provides part of the evaluation code for the benchmarks. I then implement a wrapper
class for my model that returns the log-probabilities for the input. More specifically, the input for

each benchmark is of the form

( Optional(context), continuation, Optional(image)) (4.25)

Thttps://github.com/babylm/evaluation-pipeline-2024
Zhttps://github.com/EleutherAl/Im-evaluation-harness
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and the calculation for each benchmark is as follows:

For any given example, I first prepend a BOS token and concatenate the context (if present) and
continuation, then tokenise to obtain a sequence of tokens {¢y,ts,...,tx}. I use the BOS token as I
train my model using BOS/EOS tokens. However, I do not add or count the EOS in the performance
score. I perform one forward pass over the tokens and retrieve the logits ¢;(v) over the vocabulary at
each position ¢, with no temperature scaling. I convert logits to probabilities by

0t
p(t; | t<;, Optional (image)) = exp(4i(t:)) (4.26)

>, exp(6i(v))

and define the total log-likelihood of the sequence as

N
log likelihood(t.y) = Z log p(t; | t;, Optional(image)). (4.27)

i=1
e BLiMP/BLiMP Supplement: There are no context or image inputs. Each test consists of a

minimal-pair (Sgram7 sungram) regarded as continuation. I compute

loglikelihood(sgram) and loglikelihood(sungram), (4.28)

and count the pair as correct if log likelihood(sgram) > log likelihood(syngram). The reported

score is )
#{correct pairs}

#{total pairs} (4.29)

* EWoK: Each example consists of a context, for which the model is provided one correct and

one incorrect continuation. For each continuation ¢, I compute

}
log likelihood(c) = _log p(c; | context, c.;) (4.30)

=1

The reported score is the fraction of prompts for which the gold continuation has the higher
log-likelihood.

* Winoground: Each example consists of one image ¢ and two captions (ccorrect, cincorrect). There

is no context and the captions are regarded as continuation. I compute two log-likelihoods,

log likelihood (ceomec | 7) and  log likelihood (cincorrect | %) (4.31)

The reported score is the fraction of examples for which

log likelihood (Ceorrect | ) > log likelihood (Cincorrect | %) (4.32)
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* VQA: Each example is a (question, multiple answer choices, image) tuple, where the question

is the context and the answer is the continuation. Each question example comes with one

correct answer and seven incorrect answers (ag, as, . . . , a7). Therefore, for question ¢, answer
options (ao, as, . . ., ar) and corresponding image i, I calculate eight probabilities
log likelihood(a; | ¢,7), j € {0,...,7} (4.33)

The reported score is the fraction of tuples (question, multiple answer choices, image) for which

the correct answer has the highest log-likelikhood.

4.5.2 Gate Selection

To understand whether there is a cognitive link to the dynamic gating mechanism of my framework,
I investigate the correlation between the gate weight for next token prediction and part-of-speech,

concreteness, imageability, familiarity and age of acquisition.

To achieve this, I use the portion of the Localized Narratives image-caption dataset that I save as a
held-out test set and select samples accounting for a total of 1,034 tokens. For each (image, caption)
input, [ perform one forward pass through my trained model and extract the gate weights from the final
decoder layer. For the per feature gates, I average the per feature scores to obtain the final gate weight.
Since the gate at position ¢ — 1 is used to predict the token at position ¢, I align each predicted word
with its corresponding gate value from the previous position. I then augment each word with its part-
of-speech tag using spaCy® and retrieve psycholinguistic metrics (age of acquisition, imageability,
concreteness and familiarity) from the MRC Psycholinguistic Database (Coltheart, 1981) using the
version available on HuggingFace® which is extracted from the online database’. This results in
tuples of type (word, gate weight, metric score), which I use to investigate whether the learned gating

mechanism exhibits systematic relationships with these cognitive and linguistic properties.

3https://github.com/explosion/spaCy
“nttps://huggingface.co/datasets/StephanAkkerman/MRC-psycholinguistic-database
Shttps://websites.psychology.uwa.edu.au/school/mrcdatabase/uwa_mrc.htm
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Chapter 5

Results

In this chapter, I present the experimental results of my cognitively-inspired multimodal framework. 1
first provide an overview of my base model’s performance compared to the BabyLLM Challenge 2024
multimodal baselines (Section 5.1), followed by performance analysis of the dynamic gating mecha-
nisms (Subsection 5.2.1), feature enhancement techniques (Subsection 5.2.2) and auxiliary objective
functions (Section 5.3). I then discuss the effect of the defined data curriculum strategies (Section
5.4) and resulting training dynamics (Section 5.5). Finally, I investigate the interpretability of learned
gating patterns (Section 5.6) to assess whether there is a link between the gating mechanisms in my

framework and human cognition.

5.1 Baselines

Model BLiMP BLiMP EWoK Winoground VQA
Supplement

Base Model | 75.53 £0.16% | 55.71 £0.57% | 50.41 £0.57% | 51.74 +1.83% | 50.02 £ 0.31%

Flamingo 70.88 £0.16% | 65.02 +£0.54% | 52.7+0.57% | 51.6+1.83% | 52.3+£0.31%

GIT 65.35+0.17% | 62.69 +0.54% | 52.41 £0.57% | 55.5+1.82% | 54.1 £ 0.31%

Table 5.1: The performance of my base model compared to the Flamingo and GIT BabyLLM Challenge
2024 baselines on BLiMP, BLiMP Supplement, EWoK, Winoground and VQA.

Table 5.1 provides a reference for my base model’s performance compared to the Flamingo and GIT
baselines from the BabyLM Challenge 2024 on the five selected evaluation benchmarks: BLiMP,
BLiMP Supplement, EWoK, Winoground and VQA. At the time of writing, there are no publicly
available baselines for the BabyLM Challenge 2025 Vision track. The 2024 baselines were trained
using a different regime than the constraints introduced in 2025. Therefore, while these baselines
provide useful context for interpreting performance, direct comparisons are limited by the different
training constraints. Specifically, the organisers trained the 2024 Flamingo and GIT baselines using
patch token representation for the image, despite providing only global embeddings for the challenge

participants. Moreover, the baseline models were trained on 20 epochs worth of text-only data and 40
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epochs worth of image-caption data. This contrasts with the 10-epoch constraint for the 2025 chal-
lenge, which I respect in this work. The learning rate also differs. The Flamingo and GIT baselines

were trained using a learning rate of le-4, while I used a learning rate of 5e-5 for training stability.

As shown, my base model achieves a significantly higher score on BLIMP (over 10% higher than GIT
and almost 5% higher than Flamingo) and competitive scores for EWoK, Winoground and VQA. I
suggest that my base model performs better than Flamingo and GIT on BLiMP due to architectural
differences. Even when I train a variant of my model under a similar regime to the 2024 BabyLM
Challenge baselines, I observe similarly superior results on BLiIMP (see Section 5.4). One reason
for these results could be the clear separation between the text stream and image stream, as well as
consistent fusion in my base model, which contrasts with Flamingo and GIT. In particular, in my
proposed model, the self-attention module in the first decoder layer processes only textual input,
whereas GIT concatenates the image token(s) with the text input before they are fed into the model,
which could introduce noise when extracting linguistic signals. Furthermore, my model consistently
injects visual features at every decoding layer, while Flamingo introduces visual information every

few layers. This sporadic fusion could limit the model’s ability to learn a stable textual representation.

One main factor for my base model’s lower performance on BLiMP Supplement could be the training
regime I implement, the alternation between text-only and image-caption epochs. In Section 5.5,
I analyse this training regime and find that the text-only dataset supports the BLiMP Supplement
benchmark far less than the image-caption one, which may introduce performance instability. Another
reason for the lower performance on BLiMP Supplement could be the number of training epochs, as
the BabyLM Challenge 2024 baselines were trained on twice as much text-only data and four times

as much image-caption data.

Despite the disparity in the number of training epochs, my model achieves competitive performance

on EWoK, Winoground and VQA, underscoring the effectiveness of my proposed framework.

5.2 Performance of Architectural Features

5.2.1 Dynamic Gating

In figure 5.1, I analyse the performance of my base model with different gate variants, as well with
no gate module, every 100,000 steps on the BLiMP, BLiMP Supplement, EWoK, Winoground and
VQA benchmarks. The goal for the gate module is to maintain the model’s performance on text-
only benchmarks while increasing its scores on multimodal benchmarks by allowing it to choose how

much to rely on previous text versus the input image.

BLiMP. In subfigure 5.1a, it can be seen that all models incorporating different gate variants follow
the same pattern when evaluated on BLiMP every 100,000 steps. The no gate variant achieves a
higher score in early training by 1.5%-3%. However, this gap with the other models closes over the

rest of the training. The per token gate variants seem to have slightly worse performance than the
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Figure 5.1: The performance of my base model with different gate variants, no gate, soft gate per
feature, soft gate per token, hard gate per feature, hard gate per token. The graphs illustrate the
checkpoints’ performance saved every 100,000 steps on the BLiMP, BLiIMP Supplement, EWoK,
Winoground and VQA benchmarks. The shading around the graph lines represents the standard error
in the evaluation.

other models, with the soft gate per token variant scoring between 0.5%-1.5% less in all checkpoints.
However, given that all models have a similar curve, I cannot attribute this difference with complete
certainty to the gating module, as it could also be due to a run variation. Overall, all models score
between 74.69% and 75.53% on BLiMP by the end of the 10 training epochs, and I conclude that

my dynamic gating modules do not have a significant effect on the model’s performance on BLIMP
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beyond the 200,000 steps checkpoint.

BLiMP Supplement. In the case of BLiIMP Supplement, subfigure 5.1b shows that the dynamic
gate modules introduce more performance instability. As I further discuss in Section 5.5, some of
this instability is attributed to the alternation between text-only and image-caption epochs during
training. However, the no gate model is able to stabilise after 600,000 steps regardless of the training
regime, while the dynamic gating models’ performance oscillates until the end of training. After
the 10 training epochs, the soft gate models obtain similar scores to the no gate version on BLIMP
Supplement, while hard gate variants achieve a lower score by 1%-1.75%. Combining these results
with the analysis that I perform in Section 5.5, I conclude that the gating modules introduce more
performance instability when paired with my training regime in the case of BLIMP Supplement, yet

the soft gate models are able to achieve a similar score to the no gate variant by the end of training.

EWoK. As shown in subfigure 5.1c, the EWoK benchmark is not suited to analyse the impact of
my dynamic gating modules. There is very little variation in the EWoK scores across both models
and checkpoints. This is a problem that extends beyond my dynamic gating analysis, as I encounter
this pattern in the evaluation of all my models. I discuss further in Chapter 6 that the training data
do not well support the EWoK benchmark, as a significant proportion of the concepts evaluated in
the benchmark are present too few times in the training datasets. I thus conclude that, as expected,
there is no impact of the dynamic gating modules on the EWoK scores given the BabyLM Challenge

training data.

Winoground. The results in 5.1d show a modest yet meaningful benefit of the dynamic gating
modules for the Winoground benchmark. After 500,000 steps of training, the soft gate per feature,
soft gate per token and hard gate per token models constantly outperform the no gate version. These
models also outperform the Flamingo baseline on Winoground for multiple checkpoints, including
the final one. The hard gate per feature model exhibits more unstable performance, suggesting that
the gate of this model creates noisier, possibly mismatching feature representations. I hypothesise
that the gating mechanism in the soft gate per feature, soft gate per token and hard gate per token
models produces slightly cleaner, more discriminative joint representations between images and text

than the no gate model. That, in turn, yields a small but consistent improvement on Winoground.

VQA. Subfigure 5.1¢ illustrates the scores of my base model and its dynamic gate variants on VQA.
The aim of adding a dynamic gating module was to enable the model to make more fine-grained deci-
sions when predicting the next token. Therefore, I hypothesised that this mechanism would positively
impact the performance score of my base model on VQA, by enabling it to discriminate better be-
tween the correct answer and ungrammatical and implausible distractor answers. However, I observe
limited performance benefits of the gating modules on VQA, given my training data and training
regime. By the 500,000th training steps the gate variants of the base model achieve higher VQA
scores than the no gate version at most checkpoints. However, after this step, the hard gate models

become more unstable in their performance, achieving a 5% lower score than the no gate base model
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by the end of training. The soft gate versions follow a more similar curve to the no gate model, with
the soft gate per feature variant achieving a similar score at the end of the 10th epoch (50.58% and
50.02% respectively), and the soft gate per token achieving a lower score by 2%.

I deduce that the hard and per token gate variants negatively impact the performance of my model
on the VQA benchmark, given my training data and training regime, and suspect a connection with
the training data. More specifically, I notice and analyse in section 5.5 that the model’s performance
on VQA decreases after image-caption epochs. This, to a certain extent, is expected, as the image-
caption dataset does not contain any turn-taking constructions and many fewer questions than the
text-only dataset. This contrasts with the format of the questions in the VQA dataset. Therefore, one
theory is as follows: the cross-attention module in the models having the hard and per token gates
may have learned during training to allow for stronger image signals in its fused representation, as
the dynamic gate also adds a strong text signal after. However, these models have learned to do so
on image-caption datasets that do not include questions or turn-taking. Therefore, when encountering
a question paired with an image, the gate could overemphasise the visual features past the optimal
values for VQA, treating the question tokens as if they were descriptive captions, and thereby suppress
the linguistic reasoning required to interpret the question. As a result, the model focuses on irrelevant

image content instead of parsing the question, leading to a drop in VQA accuracy.

Conclusions. [ conclude that, given my current training data and training regime, the dynamic gat-
ing modules maintain the performance of my base model without gating on BLiIMP and BLiMP
Supplement, show mixed results on VQA, and bring modest benefits for Winoground. However, I do
not discard the use of dynamic gating for multimodal BabyLLMs. As I discuss in Section 5.6, there
is a correlation between gate selections and parts-of-speech, which suggests that gating may emu-
late aspects of human selective attention. Moreover, I argue in Chapter 6 that training a multimodal
BabyLLM on data that is suited for VQA could lead to better results on this benchmark in general. This
case would require a re-implementation of the evaluation for the different flavours of gating I propose

in this work.

5.2.2 Feature Representation

To address the limited representational capacity of using only a global CLS image embedding, I inves-
tigate whether feature modulation can enhance the textual and visual representation in my framework,
and implicitly the performance of my base model. Figure 5.2 summarises the absolute performance
scores and difference compared to the base model for Feature-wise Linear Modulation (FiLM) (Perez
et al., 2018) and Dynamic Intra-modulation (DyIntra) (Gao et al., 2019) applied at different points in
the architecture (text stream, image stream, and cross-attention output), as well as channel attention
on the image features. As shown, across the seven variants, no single feature representation technique

uniformly improves all five benchmarks.

Result 1: Several modulation variants demonstrate modest improvements on specific bench-

marks. FiLM applied to textual representation and cross-attention, along with channel attention
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Figure 5.2: The absolute performance scores and difference compared to the base model for Feature-
wise Linear Modulation (FiLM) (Perez et al., 2018) and Dynamic Intra-modulation (DylIntra) (Gao
et al., 2019) applied at different points in the architecture (text stream, image stream, and cross-
attention output), as well as channel attention on the image features.

applied to the image, show the highest gains on Winoground (+0.81%, +0.54%, and +0.81% respec-
tively) by potentially creating more separable joint representations. FiLM applied to the image has the
highest positive impact on EWoK, being the only version of my models that is able to surpass 51% on
this benchmark. However, this comes at the severe cost of performance on the other benchmarks, par-
ticularly VQA. The 32.10% score drop suggests that modulating the already compressed CLS token
corrupts the limited visual information it contains, which makes the model unable to ground answers

in visual input.

Result 2: Except for FiLM on the image, the differences on BLiMP are not significant across
techniques. As shown on the right side of figure 5.1, the BLIMP score differences between the base
model and the modulation and channel attention variants lie between -0.75% and 0.75% (with the
exception of FiLM on the image), which may be due to run variations. For BLiMP Supplement, FiLM

on text shows a clear decrease in performance (-3.36%), while other variants show mixed results.

Result 3: All modulation variants, as well as the channel attention method, have lower per-
formance on VQA than the base model. Although with varied impact, all techniques decrease the
performance of my base model on VQA. Nevertheless, the cross-attention modulation and channel at-
tention seem to preserve most of the linguistic and visual signals needed for VQA, while also bringing

slight improvements to Wionground.

Overall, modulation and channel attention achieve mixed results over the five benchmarks, un-
derscoring that the CLS image embedding represents a performance bottleneck. The results
collectively demonstrate that feature modulation and channel attention techniques designed for rich
representations show limited and task-specific benefits when applied to severely compressed repre-
sentations. While certain combinations can enhance performance on specific benchmarks, they cannot

overcome the information bottleneck caused by using only a global CLS image embedding.
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5.3 Performance of Auxiliary Objective Functions

Total Loss | Aux. BLiMP BLiMP EWoK Winoground VQA
Function Func. Supplement

Weight
NTP 75.53 £0.16 | 55.71 £ 0.57 | 50.41 £0.57 | 51.74 £ 1.83 | 50.02 + 0.31
NTP + CLIP | 1.0 7196 £0.16 | 55.12+0.55 | 50.83 +£0.57 | 51.21 +£1.83 | 47.72+0.31
NTP + LCG | 0.3 7033 £0.17 | 52.88 +£0.55 | 49.57+0.57 | 51.21 £1.83 | 41.82 +0.31

Table 5.2: My base model’s performance with next token prediction (NTP) as the main loss function
and contrastive learning (CLIP) and LexiContrastive Grounding (LCG) as auxiliary losses. The
vanilla training regime uses a batch size of 64. The auxiliary function variants use a batch size of 128.

In table 5.2, I summarise the performance scores of my base model after 10 epochs of training, using
next token prediction (NTP) as the main objective function and contrastive learning (CLIP) (Radford
etal., 2021) or LexiContrastive Grounding (LCG) (Zhuang et al., 2024) as the auxiliary loss function.
I use a batch of 64 for the former training regime and a batch size of 128 for the latter, as a higher
batch size is recommended for contrastive learning (Chen et al., 2020). I select A, the weight of the
auxiliary function, through trial and error such that the values of the main and auxiliary objective

functions are of similar magnitudes.

As shown, a pure next token prediction objective function achieves the best scores for my base model
overall. There are multiple potential causes for these results. First, the BLIMP benchmarks rely
solely on linguistic information, therefore any auxiliary objective that competes with NTP can dilute
the model’s focus on linguistic signals. This is reflected in the BLIMP score differences of 3.57%
and 5.2% with the CLIP and LCG auxiliary functions, respectively. Second, the CLIP objective was
designed for a larger batch size than I could use with my computational budget and more data than
the available samples in the image-caption dataset, which may have led to a limited impact. Third, the
global image embeddings provide limited visual information, which seems to be insufficient to enable
CLIP to make fine-grained visual-linguistic alignments and LCG to achieve word-level grounding.
Fourth, the alternation between text-only and image-caption epochs may cause training instability,

since the auxiliary functions are only used during the image-caption epochs.

Therefore, with the current fixed constraints of using only 10 epochs of training and the limited global
image embeddings, there is no evident benefit of using contrastive learning auxiliary objectives. CLIP
and LCG decrease my base model’s performance on BLIMP and VQA (and BLiMP Supplement for
LCG), and maintain it on EWoK and Winoground.

From a cognitive perspective, these negative results may align better with theories of human lan-
guage acquisition. Children do not learn language through explicit contrastive mechanisms where
they simultaneously process what words do and do not mean across hundreds of examples. Words
are learned in rich, multimodal contexts where meaning emerges from use rather than from explicit
positive or negative examples. These results support my focus on architectural innovations, such as
dynamic gating, which better capture the selective and adaptive nature of human cognitive processing

during language learning.
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Effect of Data Curriculum
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Figure 5.3: The performance of my base model on BLiMP, BLiMP Supplement, EWoK, Winoground
and VQA for different data curriculum strategies. The uniform mixed strategy follows a different
definition than the others, where the number of steps in an epoch equals the number of text-only
samples. This results in ~700K training steps for 10 epochs, which are marked in the graphs by the
blue dashed line. The end of 10 epochs for the other data curriculum strategies is marked by the black
dashed line at step ~1107K.

Note: In my analysis, I refer to a complete pass over the text-only dataset and image-caption dataset
(a total of 100M words) as epoch, a pass over the text-only dataset (a total of 50M words) as text-

only epoch and a pass over the image-caption dataset (a total of SOM words) as image-caption epoch.

41



Therefore, 10 epochs consist of 10 text-only epochs and 10 image-caption epochs.

Figure 5.3 visualises the scores of my base model for the data curriculum strategies I define in this
work. I refer to them as (1) alternating epochs: alternating between 10 text-only epochs and 10 image-
caption epochs; (2) text-only epochs first: training the model on 10 text-only epochs first, then on 10
image-caption epochs; (3) image-caption epochs first: training the model on 10 image-caption epochs
first, then on 10 text-only epochs; (4) non-uniform mixed: training the model on 10 epochs where
the training batches contain both text-only and image-caption samples distributed non-uniformly,
equalling 10 text-only epochs and 10 image-caption epochs; (5) uniform mixed: training the model on
10 epochs where the training batches contain both text-only and image-caption samples distributed
uniformly, equalling 10 text-only epochs and 20 image-caption epochs. A detailed explanation of

these strategies is available in section 3.7.

As shown, the results over the five benchmarks validate the choice of alternating between text-

only and image-caption epochs in my framework.

BLiMP. Subfigure 5.3a illustrates the BLiIMP scores for the different data curriculum strategies.
The alternating epochs, non-uniform mixed and uniform mixed strategies follow a consistent pattern,
where the score improves over checkpoints. In contrast, the text-only epochs first and image-caption
epochs first show drastic changes when switching between epoch types. The pattern of the two sug-
gests that (1) the text-only dataset supports the BLiIMP benchmark far more than the image-caption
one, and (2) these strategies result in catastrophic forgetting for the model by the end of training. The
consistent improvement over checkpoints and final score of alternating between epoch types prove

that this strategy is the best for my base model on the BLiMP benchmark.

BLiMP Supplement. For BLiIMP Supplement, the optimal data curriculum strategy is less clear
than it is for BLiMP. The model’s performance oscillates when alternating between epoch types, as
detailed in section 5.5. Comparing the text-only epochs first and image-caption epochs first strategies
shows that the image-caption dataset better supports the model on BLiMP Supplement than the text-
only dataset, which aligns with further results in section 5.5. Interestingly, the model’s performance
score consistently decreases over checkpoints when the model is trained using the non-uniform mixed
strategy. A possible explanation for this result is that since there are more text-only samples in a batch
than image-caption samples, the gradient updates are dominated by the text-only data, reducing the
effect of the image-caption samples. The performance pattern for the uniform mixed strategy remains
consistent, however, resulting in a lower final score than the alternating epochs and text-only epochs

first variants.

EWOoK. Similar to the other analyses in this work, changing the data curriculum strategy has no visible
effect on the EWoK benchmark, underscoring that the training data might not be well-suited for this

benchmark.

Winoground. As shown in subfigure 5.3d, training my base model using the uniform mixed strategy
results in a higher Winoground score, with several checkpoints achieving over 53% on this bench-

mark. However, a significant factor contributing to this result is the amount of image-caption training
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data, which is double for this strategy than for the others. Comparing the text-only epochs first and
image-caption epochs first strategies, it can be seen that the model performs better on Winoground
when consistently trained on the image-caption dataset. Using the non-uniform mixed strategy results
in a more unstable performance and a lower final score, possibly due to the dominance of text-only
samples in the training batches. There is a slight increase in performance across checkpoints using
the alternating epochs strategy, with the model achieving a competitive Winoground score by the end

of training.

VQA. As shown in subfigure 5.3e, the alternating between text-only and image-caption epochs strat-
egy achieves the best performance on VQA. There is a significant performance gap between the
model trained using alternating epochs compared to the mixed strategies (over 5%), as well as the
text-only epochs first and image-caption epochs first strategies (over 10%). The alternating epochs
strategy shows an almost consistent increase over checkpoints, whereas the model’s performance in
the mixed variants remains flat, and decreases for the text-only epochs first and image-caption epochs
first strategies. The results of the coarse-grained strategies are likely due to the training data. The
image-caption dataset supports the visual reasoning component of VQA, while the text-only dataset
supports the question format by containing turn-taking constructions and a significantly larger number
of questions than the other dataset. Training the model consistently on only one epoch type deprives
it of one of these complementary components. Training by alternating between epoch types appears
to strike a balance and avoid catastrophic forgetting. The results of the uniform mixed strategy are
slightly surprising given that the Flamingo and GIT baselines achieve higher VQA scores using this
approach, however, the difference could stem from using a lower learning rate and fewer training

epochs.

In conclusion, the model’s performance across all benchmarks indicates that the alternating-between-
epochs type is the optimal data curriculum strategy for my framework in the context of the BabyLM
Challenge. These results motivate further analysis of the model’s training dynamic using this ap-

proach, which I investigate in the following section.

5.5 Training Dynamics

In figure 5.4, I visualise the performance of my base model, evaluated every 50,000 steps on BLiMP,
BLiMP Supplement, EWoK, Winoground and VQA, when alternating between text-only and image-
caption epochs. The brown dotted lines indicate that the checkpoint was saved during a text-only
epoch, while the green dashed lines indicate that the checkpoint was saved during an image-caption
epoch. For BLIMP Supplement and VQA, an interesting pattern emerges: the performance scores

significantly oscillate based on the type of data on which the model was last trained.

The data that the model was last trained on can be regarded as a fine-tuning step. Thus, I make the

following observations:
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Figure 5.4: The performance of my base model every 50,000 steps on the BLiMP, BLiMP Supple-
ment, EWoK, Winoground and VQA benchmarks. The brown doted lines indicate that the checkpoint
was saved during a text-only epoch, while the green dashed lines indicate that the checkpoint was
saved during an image-caption epoch.

Observation 1: The base model achieves better performance on BLiMP Supplement during
image-caption epochs. As shown in subfigure 5.4a, my base model obtains higher scores on BLIMP
Supplement, a text-only benchmark evaluating grammar, at checkpoints saved during image-caption
epochs compared to text-only epochs. I, therefore, investigate the breakdown of the BLiMP Supple-
ment scores and notice that the score difference for different epoch types stems from two subtasks,
subject-auxiliary inversion and turn-taking. For these subtasks, the performance of my base model
fluctuates by even ~10% between checkpoints. By analysing the individual log-likelihood scores for
each test sample for two different checkpoints, I determine that specific patterns in the image-caption
dataset coincidentally facilitate a higher probability for many of the sentences labelled as correct in
the subject-auxiliary inversion subtask. For the furn-taking subtask, although there is no noticeable
pattern in the training dataset, I observe that the model selects the correct sentences with little confi-

dence. A complete description of this investigation and findings is available in Appendix D.
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Observation 2: The base model achieves better performance on VQA during text-only epochs.
In figure 5.4b, it can be noticed the score of my base model on VQA oscillates by 5% to 10% between
text-only epochs and image-caption epochs. I theorise that the cause of these variations is the differ-
ence in textual data between the two types of epochs. There are no turn-taking constructions in the
image-caption datasets, and the number of questions (25,300 question marks) is significantly lower
than in the text-only datasets (1,083,559 question marks). However, both are present in the format
of the VQA text data. Therefore, I conclude that the image-caption datasets support the VQA task
less due to differences in the text format. I argue that for a high score on VQA during image-caption

epochs, the image-caption datasets should contain samples similar to the task.

Observation 3: The alternation between text-only and image-caption epochs has little to no ef-
fect on the BLiMP, EWoK and Winoground benchmarks for the base model. As shown in figure
5.4, there is little oscillation between text-only and image-caption epochs on the BLIMP benchmark,
suggesting that the text-only dataset supports the model better for this task, but the score generally

increases. There are no noticeable patterns for EWoK or Winoground.

Note: The reason the scores in all benchmarks stabilise after checkpoint 800,000 is because of the
small learning rate (5e-5) combined with the learning rate schedule (cosine annealing) I chose for
training. After checkpoint 800,000, the learning rate gradually decreases from le-5 to 0, which has

little effect on the gradients.

5.6 Interpretability and Correlation to Parts-of-Speech

Figure 5.5 illustrates the model’s gate value for next token prediction for the soft gate per feature and
soft gate per token model variants, aggregated per part-of-speech (PoS). The models are evaluated
on held-out test sentences from the Localized Narratives dataset, accounting for 1,034 tokens. In the
case of the soft gate per feature variant, the gate value plotted is the mean over the gate values per
feature. A lower score means that the model attended less to the pure linguistic signals and more to
the fused image-text representation when predicting the next token. For example, for the sentence “In
the image there is a board”, there is the tuple (word = board, gate = 20.58%, PoS = noun), where
the gate value at position 5, corresponding to “a”, determines the mixture of textual features and fused

(cross-attention) features when predicting the token at position 6, corresponding to “board”:

In the 1mage there is a board

0 1 2 3 4 S 6

gate value = (0.2058
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Figure 5.5: The gate value for next token prediction for the soft gate per feature and soft gate per
token gate variants, evaluated on sentences from the Localized Narratives dataset. A lower score
means that the gate attended less to the pure text hidden representation and more to the fused image-
text (cross-attention) hidden representation. The blue dots represent the median over the gate values
corresponding to each part-of-speech. The green boxes show the interquartile range, spanning from
the 25th to 75th percentile of gate values. The whiskers stretch to the minimum and maximum values.

As shown in figure 5.5, there is a cognitively-motivated correlation between gate selection and part-of-
speech present in both soft gate variants. For the parts-of-speech which are open-class and generally
more grounded (adjective, noun, proper noun, verb), both models attend more to the image signals
(left side of the plots), while for function words (conjunction, punctuation, symbols, auxiliary verbs,
particles) the models attend more to the pure text (right side of the plots). Furthermore, the models
show increased visual grounding for numerals, determiners and adpositions, suggesting they lever-

99 ¢

age visual information for counting and quantity (“two”, “three”), uniqueness (“a” vs “the”), spatial

99 Cer_ 9% (¢

reference (“this” vs “that”) and spatial relationships (“on”, “in”, “around”).
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Comparing the patterns of the two soft gate variants, the fine-grained mechanism of soft gate per
feature model enables it to make more confident and consistent gating decisions. This can be seen
in the difference between the interquartile and min-max ranges of the two gates. Per part-of-speech,
the interquartile range for soft gate per feature values spans at most 25% (excluding UNK), while for
the soft gate per token it spans up to 60% in the case of adjectives. These results suggest that the
per feature model learns more stable and generalisable gating policies for when to use visual features
within each parts-of-speech class. This is consistent with the models’ evaluation on the BabyLM
Challenge benchmarks, where the soft gate per feature variant achieves higher performance than the

soft gate per token one, as discussed in section 5.2.1.

I confirm the correlation between gate selection and parts-of-speech by running the Kruskal-Wallis
statistical test (McKight and Najab, 2010) for both soft gate variants. For the soft gate per feature, 1
obtain (H = 154.91,p < 0.001) and for the soft gate per token, I obtain (H = 164.43,p < 0.001).

For the hard gate variants, their relationship to parts-of-speech is less interpretable. The hard gate per
feature model’s scores equal the proportion of features for which the gate selected text over visually-
enriched representations. Without knowing what individual features represent, these scores provide
limited insight. The plot for the hard gate per feature gate selection is available in Appendix F. The
hard gate per token model presents a different challenge. It learns to almost exclusively select the
fused text-image representation (the gate value per token becomes 0), therefore bypassing the gating
mechanism and becoming a standard multimodal model. This suggests that the discrete decisions of

the hard gate per token model may be too restrictive for learning nuanced modality selection policies.

Similarly to parts-of-speech, I also investigate whether there is a correlation between soft gate values
and concreteness, familiarity and imageability scores, as well as age of acquisition. For this, I use the
MRC Psycholinguistic Database (Coltheart, 1981) and directly map the next word to be predicted with
its corresponding score in the database. I then use the Spearman’s rank correlation test to asses the
relationship between gate values and each psycholinguistic measure. I find a statistically significant
negative correlation between concreteness and gate values as well as between imageability and gate

values for both soft gate variants.

Table 5.3 summarises the Spearman’s test results, while table 5.4 aggregates the soft gate per feature
and soft gate per token values per concreteness and imageability categories. In table 5.4, I define
bins for concreteness and imageability based on their distribution in the MRC database to create
psychologically meaningful categories. Specifically, I use cutpoints at mean + 1 SD to separate words
into four groups: Very Abstract/Low (< pu — o), Abstract/Low (1 — o to ), Concrete/High (i to
i + o), and Very Concrete/Very High (> p + o), where 1 and o are the mean and standard deviation

reported in the MRC database documentation.

As shown, more concrete and imageable words receive more visual grounding (lower gate values) in
both soft gate variants. However, the correlation is weak (|p| < 0.2), and the pattern is non-monotonic
1.e., moderately abstract/concrete words show higher gate rates than the very abstract/concrete ones,

suggesting that other factors, such as part-of-speech, are more important in gating decisions.
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Measure Soft Gate per Feature Soft Gate per Token

Concreteness p = —0.139,p < 0.001 p = —0.156,p < 0.001
Imageability p= —0.153,p < 0.001 p=—-0.151,p < 0.001

All correlations based on n=701 (concreteness) and n=715 (imageability) words.

Table 5.3: Spearman correlations between gate values and psycholinguistic properties for the soft gate
variants.

Measure Category Soft Gate per Feature  Soft Gate per Token
Mean (SD) #words Mean (SD)  # words

Very Abstract (<318) 0.427 (0.141) 420 0.586 (0.273) 420
Abstract (318-438) 0.471 (0.136) 82 0.674 (0.248) 82

Concreteness - rete (438-558) 0391 (0.155) 80  0.529 (0.292) 80
Very Concrete (>558) 0.343 (0.139) 119 0.428 (0.267) 119

Very Low (<342) 0427 (0.143) 401  0.588(0.273) 401

Imaecabilicy | LOW (342-450) 0481 (0.130) 96  0.686(0.238) 96
& Y High (450-558) 0378 (0.126) 78  0.509 (0.276) 78

Very High (>558) 0.351 (0.155) 140 0.441 (0.281) 140

Categories defined as p &= 10 based on MRC database references. SD = standard deviation.

Table 5.4: Mean gate values by psycholinguistic categories for the soft gate variants.

In conclusion, there is a link between the soft gate mechanisms proposed in my framework and
human cognition. The models learn to distinguish between content words that tend to require visual
grounding (nouns, verbs, adjectives) and function words that tend to require mainly linguistic signals
(conjunctions, auxiliaries, particles) without explicit supervision. The soft gate per feature values
exhibit more consistent patterns, indicating more stable gating policies, which in turn translate to

higher performance on the BabyLM Challenge evaluation benchmarks.

While there is a statistically significant correlation between gating decisions and concreteness and
imageability scores, this correlation is weak (|p| < 0.2). These results indicate that grammatical
category is the primary factor for modality selection and suggest that the model prioritises syntactic
over semantic cues when determining visual grounding. This finding raises questions about whether
incorporating stronger semantic cues would result in stronger correlations to psycholinguistic metrics
and, implicitly, better multimodal performance, possibly by using patch-token image representations
instead of a global CLS token.
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Chapter 6
Discussion

In this chapter, I summarise the key findings from my results and discuss their implication for multi-

modal language learning under the BabyLM Challenge constraints.

6.1 Key Findings

6.1.1 Dynamic Gating and Cognitive Plausibility

One of the most significant findings in this work is that dynamic gating mechanisms can learn
cognitively-plausible patterns of multimodal fusion without explicit supervision, demonstrating a

strong correlation between gate selections and parts-of-speech (Section 5.6).

However, these mechanisms showed modest and task-specific improvements on the BabyLM Chal-
lenge benchmarks. This gap between cognitive plausibility and performance improvement raises

important questions:

1. To what extent are the BabyLM Challenge evaluation benchmarks able to capture the benefits

of cognitively-inspired architectures?

2. Other than the ones explored here, which cognitive mechanisms are necessary to achieve sig-

nificant performance improvements?

3. Can cognitively-inspired architectures bridge the gap when the underlying mechanisms of ma-

chine learning (e.g., gradient descent) and human learning remain fundamentally different?

6.1.2 Global Image Embeddings as an Information Bottleneck

The limited impact of the feature enhancement techniques I explore in this work, FiLM (Perez et al.,
2018), Dylntra (Gao et al., 2019) and channel attention, underscores a significant constraint: global
CLS tokens provide insufficient visual information for fine-grained multimodal learning. This finding
has implications for the BabyLM Challenge design, as this constraint may restrict models to superfi-

cial multimodal fusion, and therefore, may unreasonably limit participants in the Challenge.
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6.1.3 Auxiliary Objectives and Human Language Learning

Another important finding in this work is the negative results of using contrastive learning auxiliary
objectives, CLIP (Radford et al., 2019) and LCG (Zhuang et al., 2024). These methods were unable to
improve the base model’s performance on the benchmarks under the BabyLLM Challenge constraints,
as they require large batch sizes and rich visual representations to achieve fine-grained alignments.
From a cognitive perspective, these results may be more aligned with human language acquisition.
Children do not learn language through explicit contrastive mechanisms where they simultaneously
compare a large number of positive and negative examples. Instead, they learn through rich visio-
linguistic input where meaning emerges from use. This suggests that architectural innovations such
as dynamic gating, which selectively incorporates attention cues, may be more cognitively appropriate

than auxiliary objective functions that require large parallel comparisons.

6.2 Training Data and Evaluation Benchmarks

Missing modality problem. As results in 5.5 suggest, the split of the training data into text-only and
image-caption datasets introduces complexity and instability during training. While I attempt to mit-
igate this in my work by alternating epochs, this approach still yields performance oscillations. The
BabyLLM Challenge 2024 baselines addressed this problem by pairing text-only and image-caption in
the same batch. However, this required training the models on twice as many image-caption samples,
which conflicts with the 10-epoch limit introduced in 2025. Moreover, to the best of my knowledge,

there is no cognitive justification for this split.

Benchmark suitability in connection to training data. Two of the BabyLM Challenge bench-
marks I used in this work showed limitations in evaluating my multimodal models, which potentially

stem from a mismatch with the training data.

EWoK demonstrates no sensitivity to changes in architecture or training strategy, with performance
remaining around 50% regardless of the experiment conditions. This indicates a mismatch between
the concepts tested in EWoK and those present in the training dataset. I therefore investigate the
frequency of concepts tested by EWoK in the BabyLLM Challenge training data, as previous research
suggests that language models rely on frequency more than children do in word acquisition (Chang
and Bergen, 2022). EWoK is constructed such that the model is presented with two target sentences
differing by one or a few words, denoted as concepts. I perform a Regular Expression match for
the concepts tested in EWoK over the BabyLLM Challenge training data. I find that in 37.69% of
the EWoK test examples, at least one concept of the two targets appears fewer than 100 times in
the training data, with 13% of test examples having both concepts appearing O times. Therefore, I

conclude that the training dataset does not properly support EWoK evaluation.

As discussed in Section 5.5, the score difference between epoch types for VQA suggests that this
benchmark depends significantly on the presence of question-answer and turn-taking formats in the

training dataset rather than on visual understanding capabilities. These VQA performance patterns
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align with observations by Laurencon et al. (2024a), who note that vision-language models typically
only learn visual question answering during fine-tuning stages, not during pre-training, unless they
are explicitly exposed to data following the VQA format. This is particularly problematic under the
BabyLM constraints where no fine-tuning stage exists, forcing models to acquire question-answering

capabilities just from pre-training data that lacks examples similar to the VQA task.
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Chapter 7
Summary and Conclusions

In this work, I explored several cognitively-inspired approaches to multimodal language learning un-
der the constraints of the BabyLLM Challenge. By developing a framework that incorporates dynamic
gating, feature enhancement techniques and contrastive learning auxiliary objectives, I investigated

whether models can learn language more like humans do.
My key contributions include:

* Dynamic gating as selective attention: The token-wise dynamic gating mechanisms I intro-
duced in this work supported the learning of cognitively-plausible data fusion patterns without
supervision. Models learned to attend more to visual cues for content words (nouns, adjec-
tives, verbs) while prioritising linguistic signals for function words (auxiliary verbs, particles,
conjunctions). While performance improvements on the BabyLLM Challenge benchmarks were
modest, the interpretable gating mechanism seems to mirror aspects of human selective atten-

tion;

* Identifying limitations of the BabyLLMs Challenge Vision track setup: My experiments re-
vealed that using a single global image embedding becomes a severe limitation for multimodal
learning. Feature enhancement techniques were insufficient to overcome this bottleneck, high-
lighting that the setup of the BabyLM Challenge Vision track may not be optimal. Moreover,
some of my findings raised questions about the suitability of the training data and evaluation

benchmarks;

* Evaluating training strategies: Based on the data curriculum strategies I defined in this work,
I found that alternating between text-only and image-caption epochs achieves the best results
across benchmarks, at the expense of training stability. The negative results from using con-
trastive learning auxiliary objectives suggest that learning via large-scale parallel comparisons

may be less cognitively aligned.

Despite current limitations, the framework I introduce in this work represents a crucial step toward
language models that learn not only what humans know but also how humans learn: efficiently, incre-

mentally and grounded in visual experience.
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7.1 Limitations and Future Work

As discussed in various sections of this work, the global CLS image embeddings proved to be a
significant limitation in assessing the capabilities of my proposed method, with feature enhancement
techniques being insufficient in improving the image representation (Section 5.2.2). Moreover, the
training data was a significant factor influencing the models’ results on the BabyLM benchmarks,

which may not fully reflect the architectural features I introduced in this work.

As a general observation, training vision-language BabyLMs differs from training state-of-the-art
large vision-language models, which rely on large pre-trained components. Moreover, VLMs can
undergo multiple training stages where components are selectively frozen or unfrozen, higher-quality
data is gradually introduced and the image resolution is progressively increased (Laurengon et al.,
2024a). With limited data and a maximum of just 10 training epochs under the BabyLM Challenge

constraints, implementing multi-stage training strategies becomes significantly more difficult.

Based on the results and findings in this work, for the BabyLM Challenge Vision track, I make the

following recommendations and observations for future work:

* The training dataset should be varied, with high-quality text that covers a range of English
constructions. In particular, the dataset should cover constructions present in the evaluation
benchmarks (for example, images paired with question-answers for VQA), as well as ensuring
that the training data covers (with a certain threshold) the concepts present in the test data (e.g.,
EWoK);

* For training stability and improved language acquisition, it may be more beneficial to train the
model on a completely multimodal dataset, which is an interesting lead to investigate in future

work;

* Given the limitations that the global CLS token introduced in this work, future work should
use patch-token representations for the image input, which is the aim of future iterations of
this framework. This would enable richer multimodal learning and potentially benefit from

word-level contrastive learning;

* While the BabyLLM Challenge evaluates overall language acquisition, it would be interesting to
develop benchmarks that specifically reward cognitively-plausible mechanisms, i.e., evaluating

not only what the model produces, but also the cognitive principles guiding its responses.
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Appendix A

Dual Stream Transformer Hyperparameters

Model Hyperparameter Value
Model Dimensions

Model dimension (d,,,oqer) 768
Hidden dimension 3072
Number of attention heads 8
Image encoder layers 5
Decoder layers 8

Vocabulary & Sequence
Vocabulary size

Maximum sequence length
Special tokens

50,260 (GPT-2 tokeniser (Radford et al., 2019))
128
[PAD], [BOS], [EOS]

Activation & Regularisation
Activation function
Dropout rate

Layer normalisation

Layer norm epsilon

GELU (Hendrycks and Gimpel, 2016)
0.1

Pre-layer norm
le-5 (PyTorch default)

Input Dimensions

DINOv2 embedding dimension 768

DINOV?2 representation CLS token only
Model Statistics

Total parameters ~198.5M

Table A.1: The hyperparameters list for my dual stream transformer base model.
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Appendix B

Experiments Summary

# Model Architecture Model Hyperparams Training Config
1 Base model (§3.3) Default? Default®
Dynamic Gating
2 Base model + no gate Default* Default®
3 Base model + soft gate per feature Default? Default®
4 Base model + soft gate per token Default? Default®
5 Base model + hard gate per feature Default? Default®
6 Base model + hard gate per token Default? Default®
Feature Representation
7 Base model + FiLM on text Default? Default®
8 Base model + FiILM on image Default? Default®
9 Base model + FiLM on cross-attention ~ Default* Default®
10 Base model + Dylntra on text Default? Default®
11 Base model + DylIntra on image Default® Default®
12 Base model + Dylntra on cross-attention Default® Default®
13 Base model + Channel Attention Default? Default®
Auxiliary Objectives
14 Base model Default? Default® + CLIP (BS=128)

15 Base model

Default® + weight tying

Default® + LCG (BS=128)

Data Curriculum
16 Base model
17 Base model
18 Base model
19 Base model

Default?
Default?
Default?
Default?

Text-only — image-caption®

Image-caption — text-only!
Non-uniform mix®
Uniform mix

aAsin Table A.1 PAsinTable 4.1 BS = batch size

“First 10 epochs text-only, next 10 epochs image-caption
dFirst 10 epochs image-caption, next 10 epochs text-only

“Image-caption and text-only data non-uniformly mixed in same batch

Table B.1: Summary of all the experiments I conduct in this work.
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Appendix C

Design Choices for the Image Processing

Pipeline

Despite using only global CLS image embeddings, I chose to implement an image encoder in my

framework for the following reasons:

* Future compatibility: I aim to develop future iterations of this framework that address current
limitations by using patch tokens instead of global image embeddings. For comparable results,
I choose to use an encoder for the CLS token as well, which benefits from feed-forward and
normalisation layers, but not self-attention. The image encoder outputs a non-linear adaptation

of pretrained visual features and improves alignment with the text stream.

* Empirical performance: I experimented with three variants: (1) directly using linearly projected
DINOv2 embeddings, (2) applying a 2-layer multi-layer-perceptron (MLP), and (3) using the
transformer encoder. The encoder variant demonstrated superior performance across bench-
marks, which can be attributed to the encoder’s deeper transformation capacity. The benchmark

scores for the three variants are available in table C.1.

* Computational efficiency: An alternative to the image encoder is to import and fully or partially
unfreeze the external pretrained image encoder used in the BabyLLM Challenge, facebook/dino2-
base'. However, this would require processing the raw images through the entire encoder (86.6
million parameters) during training, which would significantly increase the computational costs
for data loading, forward passes (and backward passes if unfrozen) and memory usage. This
approach contradicts the constraints of the challenge, which advocates for the fair use of com-
putational resources. In contrast, a customisable image encoder component taking as input

pre-computed embeddings can be modified based on the user’s computational constraints.

Table C.1 summarises the performance of the base model with different image processing pipelines,
evaluated every 200,000 steps on BLiMP, BLiMP Supplement, EWoK, Winoground and VQA. As
shown, the results on BLiMP, BLiMP Supplement and VQA validate the use of a transformer encoder,

'mttps://huggingface.co/facebook/dinov2-base
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Model ‘ Checkpoint ‘ BLiMP ‘ BLiMP S. ‘ EWoK ‘ Winoground ‘ VQA
200K 69.99 +0.17 | 54.03+£0.52 | 49.87 +0.57 | 51.74 +1.83 | 43.00 + 0.31
400K 7321 +£0.16 | 53.33+£0.62 | 49.93 +0.57 | 52.68 + 1.83 | 46.54 + 0.31
Base + 600K 72.82 +0.16 | 52.89 £ 0.65 | 50.38 £ 0.57 | 52.95+1.83 | 46.41 +0.31
No Encoder 800K 73.40 £0.16 | 53.69 £0.64 | 50.16 £ 0.57 | 52.41 +1.83 | 46.52 +0.31
M 73.17 £0.16 | 53.62 £ 0.64 | 50.43 +0.57 | 52.14 + 1.83 | 46.65 + 0.31
1.1I07M | 7429 +0.16 | 55.63 +0.58 | 50.18 £0.57 | 51.21 +1.83 | 45.02 +0.31
200K 70.66 +0.17 | 57.42 £0.49 | 50.03 £0.57 | 52.01 = 1.83 | 41.72 + 0.31
400K 73.47 +0.16 | 51.89 +£0.66 | 49.96 + 0.57 | 50.67 + 1.83 | 48.41 +0.31
Bﬁsf; 600K 7320 £0.16 | 52.49 £ 0.68 | 50.02 +0.57 | 52.01 +1.83 | 43.32 +0.31
Encoder 800K 74.06 £0.16 | 51.71 £0.67 | 50.47 +0.57 | 52.28 + 1.83 | 48.18 +0.31
M 73.71 £0.16 | 50.56 + 0.67 | 50.21 +0.57 | 52.55+1.83 | 48.54 +0.31
1.107M | 74.35+0.16 | 55.38 £ 0.60 | 50.21 +0.57 | 50.27 + 1.83 | 49.83 + 0.31
200K 69.97 +0.17 | 55.02+0.54 | 49.83 +0.57 | 51.07 +1.83 | 34.11 +0.32
400K 73.22+0.16 | 51.88 £0.66 | 50.13 +£0.57 | 50.94 + 1.83 | 47.82 + 0.31
Trgg;gr;fn o 600K 73.47 £0.16 | 53.08 +0.62 | 50.74 +0.57 | 51.61 +1.83 | 48.36 + 0.31
Encoder 800K 7418 £0.16 | 52.69 +0.62 | 50.69 +0.57 | 52.41+1.83 | 51.2+0.31
M 7434 £0.16 | 54.00+0.61 | 50.82 +0.57 | 52.41+1.83 | 51.2+0.31
1.107M | 75.53 £0.16 | 55.71 £0.57 | 50.41 £0.57 | 51.74 + 1.83 | 50.02 + 0.31

Table C.1: The performance of the base model with different image processing pipelines. The models
are evaluated every 200,000 steps on BLIMP, BLiIMP Supplement, EWoK, Winoground and VQA.

for which the base model achieves the best scores. However, since a single image embedding cannot

benefit from the self-attention mechanism, an MLP encoder suffices if computational resources are a

constraint, achieving competitive performance.Besides the superior performance, the motivation for

using a transformer encoder in this work was to enable a direct performance comparison with future

iterations of the framework using patch-token embeddings.
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Appendix D

Explanation for Base Model Performance

Oscillation on BLiMP Supplement

As discussed in 5.5, the performance of the base model significantly oscillates between text-only
and image-caption epochs for the subject-auxiliary inversion and turn taking substask of BLiMP
Supplement. I thus investigate the log probability scores of my base model for each subtask example
at checkpoints 500,000 (text-only epoch) and 550,000 (image-caption epoch), for which the former
model is incorrect and the latter is correct. These two checkpoints present the highest difference in

BLiMP Supplement scores (7.54%). I make the following observations:

1. For the subject-auxiliary inversion, 68.2% of the examples for which the model at checkpoint
500,000 (text-only epoch) is incorrect and the model at checkpoint 550,000 (image-caption
epoch) is correct have the correct sentence of the pair starting with “Is” followed by a noun
phrase. For example, pairs such as (“Is the host expecting an award-winning director that
hasn’t finished dressing yet?”, “Hasn’t the host is expecting an award-winning director that
finished dressing yet?”). This contrasts with the distribution of the task, where 31.1% of the
pairs have the correct sentence starting with “Is” followed by a noun phrase. I theorise that the
Localized Narratives dataset supports the model at checkpoint 550,000 (image-caption epoch)
in choosing the ”Is” followed by noun phrase sentences with higher probability, which happen
to be the correct sentences in these pairs. That is because there are 706,251 constructions of the
form “there is” followed by a noun phrase in the Localized Narratives dataset. I hypothesise
that as a result, my model learns that the pattern “is” followed by a noun phrase is more likely

during the image-caption epochs.

2. For the turn taking subtask, even if the model at checkpoint 550,000 (image-caption epoch)
chooses the correct sentence more often, it does so with little confidence. For most examples
for which checkpoint 550,000 (image-caption epoch) is correct and checkpoint 500,000 (text-
only epoch) is not, the log probability difference between the correct and incorrect sentence of
the former checkpoint is less than 2 points. To put this in context, the log probability scores
range between -89 and -156, for which 2 points represent 0.013% to 0.0225%. There is no
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noticeable pattern in the training data that can motivate the model’s better performance during
image-caption epochs on the the turn taking subtask. I conclude that this behaviour requires

further investigation which I leave for future work.
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Appendix E

BabyLLM Challenge Vision Track Training
Dataset

Pretraining Dataset Description # Words  # Images
Localized Narratives (Pont-Tuset et al., 2020) image-caption 27TM 0.6M
Conceptual Captions 3M (Sharma et al., 2018) image-caption 23M 2.3M
CHILDES (MacWhinney, 2000) child-directed speech 15M -
British National Corpus (BNC), dialogue portion dialogue 4M -
Project Gutenberg, children’s stories (Gerlach and Font-Clos, 2020)  written English 13M -
OpenSubtitles (Lison and Tiedemann, 2016) movie subtitles 10M -
Simple English Wikipedia written English ™ -
Switchboard Dialog Act (Stolcke et al., 2000) dialogue <IM -
Total 100M 29M

Table E.1: Data sources and corresponding word and image approximate counts in the multimodal
pretraining dataset of the BabyLM Challenge. Adapted from (Choshen et al., 2024).
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Appendix F

Extra Plots
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Figure F.1: Hard gate per feature gate selection per part-of-speech.
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