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Small Language Models (SLMs), typically under 1B pa-
rameters, provide valuable, interpretable, and efficient
alternatives to large models. They are especially suit-
able for proprietary, task-specialised applications such as
query routing in chatbot systems or edge/on-device ML.

Problem: High-precision learner representations are
essential for personalised and adaptive learning and as-
sessment.

Solution: I propose bilingual SLMs for second language
adaptation — or L2LMs — which simulate the develop-
mental trajectories of second-language learners with a
typologically-diverse Lis.
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Figure 1:Conceptual Architecture of L2LMs and Sequential/Simultaneous Bilingual SLMs from

Constantinescu et al (2025)
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Figure 2:Language Model Architecture of L2LMs from Aoyama & Schneider (2024)

Integrated Learning and Assessment: Calibrating
LLMs with L2LMs of L1 Background to identify the right
tests for the right purposes. Accessibility by Design:
Calibrations LLMs with L2LMs for lower-resourced Lis,
especially those that occur infrequently in learner cor-
pora, could help offer more personalised learning pro-
files for a diverse population of English L2 learners.

Design for EDIB: Model design to reflect the diversity
of L1 backgrounds trained on naturalistic volumes and
distribution of learner corpora.
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Figure 3:Distribution of L1 Backgrounds (by Language Family) in the Cambridge Learner Corpus

#1 One Brand: Integrating cutting-edge LLM tech-
niques techniques into L2LM pre-training [ 3,4 ] and post-
training strategies for L2LM-LLM Interaction and Cali-
bration.

Trust through Interpretability: Rich Learning Dy-
namics and Checkpointing of L2LMs in an explicit L2LM
Design Philosophy, inspired by the Pico Learning Dy-
namics Framework [3].
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